Using Genetic Programming to Build Self-Adaptivity into Software-Defined
Networks
- URL: http://arxiv.org/abs/2306.00316v2
- Date: Tue, 15 Aug 2023 15:38:27 GMT
- Title: Using Genetic Programming to Build Self-Adaptivity into Software-Defined
Networks
- Authors: Jia Li, Shiva Nejati, Mehrdad Sabetzadeh
- Abstract summary: Self-adaptation solutions need to periodically monitor, reason about, and adapt a running system.
We propose a self-adaptation solution that continuously learns and updates the control constructs in the data-forwarding logic of a software-defined network.
- Score: 21.081978372435184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-adaptation solutions need to periodically monitor, reason about, and
adapt a running system. The adaptation step involves generating an adaptation
strategy and applying it to the running system whenever an anomaly arises. In
this article, we argue that, rather than generating individual adaptation
strategies, the goal should be to adapt the control logic of the running system
in such a way that the system itself would learn how to steer clear of future
anomalies, without triggering self-adaptation too frequently. While the need
for adaptation is never eliminated, especially noting the uncertain and
evolving environment of complex systems, reducing the frequency of adaptation
interventions is advantageous for various reasons, e.g., to increase
performance and to make a running system more robust. We instantiate and
empirically examine the above idea for software-defined networking -- a key
enabling technology for modern data centres and Internet of Things
applications. Using genetic programming,(GP), we propose a self-adaptation
solution that continuously learns and updates the control constructs in the
data-forwarding logic of a software-defined network. Our evaluation, performed
using open-source synthetic and industrial data, indicates that, compared to a
baseline adaptation technique that attempts to generate individual adaptations,
our GP-based approach is more effective in resolving network congestion, and
further, reduces the frequency of adaptation interventions over time. In
addition, we show that, for networks with the same topology, reusing over
larger networks the knowledge that is learned on smaller networks leads to
significant improvements in the performance of our GP-based adaptation
approach. Finally, we compare our approach against a standard data-forwarding
algorithm from the network literature, demonstrating that our approach
significantly reduces packet loss.
Related papers
- Brain-Inspired Online Adaptation for Remote Sensing with Spiking Neural Network [17.315710646752176]
This work proposes an online adaptation framework based on spiking neural networks (SNNs) for remote sensing.
To our knowledge, this work is the first to address the online adaptation of SNNs.
The proposed method enables energy-efficient and fast online adaptation on edge devices, and has much potential in applications such as remote perception on on-orbit satellites and UAV.
arXiv Detail & Related papers (2024-09-03T08:47:53Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - CODA: A COst-efficient Test-time Domain Adaptation Mechanism for HAR [25.606795179822885]
We propose CODA, a COst-efficient Domain Adaptation mechanism for mobile sensing.
CODA addresses real-time drifts from the data distribution perspective with active learning theory.
We demonstrate the feasibility and potential of online adaptation with CODA.
arXiv Detail & Related papers (2024-03-22T02:50:42Z) - Low Complexity Adaptive Machine Learning Approaches for End-to-End
Latency Prediction [0.0]
This work is the design of efficient, low-cost adaptive algorithms for estimation, monitoring and prediction.
We focus on end-to-end latency prediction, for which we illustrate our approaches and results on data obtained from a public generator provided after the recent international challenge on GNN.
arXiv Detail & Related papers (2023-01-31T10:29:11Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Continual Adaptation for Deep Stereo [52.181067640300014]
We propose a continual adaptation paradigm for deep stereo networks designed to deal with challenging and ever-changing environments.
In our paradigm, the learning signals needed to continuously adapt models online can be sourced from self-supervision via right-to-left image warping or from traditional stereo algorithms.
Our network architecture and adaptation algorithms realize the first real-time self-adaptive deep stereo system.
arXiv Detail & Related papers (2020-07-10T08:15:58Z) - DANR: Discrepancy-aware Network Regularization [15.239252118069762]
Network regularization is an effective tool for learning coherent models over networks.
We propose a novel approach that is robust to inadequate regularizations and effectively captures model evolution and structural changes over-temporal networks.
We develop a scalable and scalable algorithm based on the alternating method of multipliers (ADMM) to solve the proposed problem with guaranteed convergence to global optimum solutions.
arXiv Detail & Related papers (2020-05-31T02:01:19Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.