Brain-Inspired Online Adaptation for Remote Sensing with Spiking Neural Network
- URL: http://arxiv.org/abs/2409.02146v1
- Date: Tue, 3 Sep 2024 08:47:53 GMT
- Title: Brain-Inspired Online Adaptation for Remote Sensing with Spiking Neural Network
- Authors: Dexin Duan, Peilin liu, Fei Wen,
- Abstract summary: This work proposes an online adaptation framework based on spiking neural networks (SNNs) for remote sensing.
To our knowledge, this work is the first to address the online adaptation of SNNs.
The proposed method enables energy-efficient and fast online adaptation on edge devices, and has much potential in applications such as remote perception on on-orbit satellites and UAV.
- Score: 17.315710646752176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: On-device computing, or edge computing, is becoming increasingly important for remote sensing, particularly in applications like deep network-based perception on on-orbit satellites and unmanned aerial vehicles (UAVs). In these scenarios, two brain-like capabilities are crucial for remote sensing models: (1) high energy efficiency, allowing the model to operate on edge devices with limited computing resources, and (2) online adaptation, enabling the model to quickly adapt to environmental variations, weather changes, and sensor drift. This work addresses these needs by proposing an online adaptation framework based on spiking neural networks (SNNs) for remote sensing. Starting with a pretrained SNN model, we design an efficient, unsupervised online adaptation algorithm, which adopts an approximation of the BPTT algorithm and only involves forward-in-time computation that significantly reduces the computational complexity of SNN adaptation learning. Besides, we propose an adaptive activation scaling scheme to boost online SNN adaptation performance, particularly in low time-steps. Furthermore, for the more challenging remote sensing detection task, we propose a confidence-based instance weighting scheme, which substantially improves adaptation performance in the detection task. To our knowledge, this work is the first to address the online adaptation of SNNs. Extensive experiments on seven benchmark datasets across classification, segmentation, and detection tasks demonstrate that our proposed method significantly outperforms existing domain adaptation and domain generalization approaches under varying weather conditions. The proposed method enables energy-efficient and fast online adaptation on edge devices, and has much potential in applications such as remote perception on on-orbit satellites and UAV.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Pedestrian intention prediction in Adverse Weather Conditions with Spiking Neural Networks and Dynamic Vision Sensors [0.0699049312989311]
This study examines the effectiveness of Spiking Neural Networks (SNNs) paired with Dynamic Vision Sensors (DVS) to improve pedestrian detection in adverse weather.
We assess the efficiency of SNNs compared to traditional Convolutional Neural Networks (CNNs)
The results indicate that SNNs, integrated with DVS, significantly reduce computational overhead and improve detection accuracy in challenging conditions compared to CNNs.
arXiv Detail & Related papers (2024-06-01T15:58:24Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications.
We describe advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient SNNs.
We discuss the potential path forward for research in building deployable SNN systems.
arXiv Detail & Related papers (2023-12-02T19:47:00Z) - Adaptive Calibration: A Unified Conversion Framework of Spiking Neural Networks [1.632439547798896]
Spiking Neural Networks (SNNs) have emerged as a promising energy-efficient alternative to traditional Artificial Neural Networks (ANNs)
This paper focuses on addressing the dual objectives of enhancing the performance and efficiency of SNNs through the established SNN conversion framework.
arXiv Detail & Related papers (2023-11-24T03:43:59Z) - NAS-ASDet: An Adaptive Design Method for Surface Defect Detection
Network using Neural Architecture Search [5.640706784987607]
We propose a new method called NAS-ASDet to adaptively design network for surface defect detection.
First, a refined and industry-appropriate search space that can adaptively adjust the feature distribution is designed.
Then, a progressive search strategy with a deep supervision mechanism is used to explore the search space faster and better.
arXiv Detail & Related papers (2023-11-18T03:15:45Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - Evolving Connectivity for Recurrent Spiking Neural Networks [8.80300633999542]
Recurrent neural networks (RSNNs) hold great potential for advancing artificial general intelligence.
We propose the evolving connectivity (EC) framework, an inference-only method for training RSNNs.
arXiv Detail & Related papers (2023-05-28T07:08:25Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.