Anomaly Detection with Variance Stabilized Density Estimation
- URL: http://arxiv.org/abs/2306.00582v2
- Date: Wed, 8 May 2024 07:27:18 GMT
- Title: Anomaly Detection with Variance Stabilized Density Estimation
- Authors: Amit Rozner, Barak Battash, Henry Li, Lior Wolf, Ofir Lindenbaum,
- Abstract summary: We present a variance-stabilized density estimation problem for maximizing the likelihood of the observed samples.
To obtain a reliable anomaly detector, we introduce a spectral ensemble of autoregressive models for learning the variance-stabilized distribution.
We have conducted an extensive benchmark with 52 datasets, demonstrating that our method leads to state-of-the-art results.
- Score: 49.46356430493534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a modified density estimation problem that is highly effective for detecting anomalies in tabular data. Our approach assumes that the density function is relatively stable (with lower variance) around normal samples. We have verified this hypothesis empirically using a wide range of real-world data. Then, we present a variance-stabilized density estimation problem for maximizing the likelihood of the observed samples while minimizing the variance of the density around normal samples. To obtain a reliable anomaly detector, we introduce a spectral ensemble of autoregressive models for learning the variance-stabilized distribution. We have conducted an extensive benchmark with 52 datasets, demonstrating that our method leads to state-of-the-art results while alleviating the need for data-specific hyperparameter tuning. Finally, we have used an ablation study to demonstrate the importance of each of the proposed components, followed by a stability analysis evaluating the robustness of our model.
Related papers
- Kinetic Interacting Particle Langevin Monte Carlo [0.0]
This paper introduces and analyses interacting underdamped Langevin algorithms, for statistical inference in latent variable models.
We propose a diffusion process that evolves jointly in the space of parameters and latent variables.
We provide two explicit discretisations of this diffusion as practical algorithms to estimate parameters of statistical models.
arXiv Detail & Related papers (2024-07-08T09:52:46Z) - Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density [93.32594873253534]
Trustworthy machine learning requires meticulous regulation of model reliance on non-robust features.
We propose a framework to delineate and regulate such features by attributing model predictions to the input.
arXiv Detail & Related papers (2024-07-05T09:16:56Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Investigating the Adversarial Robustness of Density Estimation Using the
Probability Flow ODE [4.7818621660181595]
We introduce and evaluate six gradient-based log-likelihood attacks, including a novel reverse integration attack.
Our experimental evaluations on CIFAR-10 show that density estimation using the PF ODE is robust against high-complexity, high-likelihood attacks, and that in some cases adversarial samples are semantically meaningful, as expected from a robust estimator.
arXiv Detail & Related papers (2023-10-10T23:58:53Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - TabADM: Unsupervised Tabular Anomaly Detection with Diffusion Models [5.314466196448187]
We present a diffusion-based probabilistic model effective for unsupervised anomaly detection.
Our model is trained to learn the density of normal samples by utilizing a unique rejection scheme.
At inference, we identify anomalies as samples in low-density regions.
arXiv Detail & Related papers (2023-07-23T14:02:33Z) - Copula-Based Density Estimation Models for Multivariate Zero-Inflated
Continuous Data [0.0]
We propose two copula-based density estimation models that can cope with multivariate correlation among zero-inflated continuous variables.
In order to overcome the difficulty in the use of copulas due to the tied-data problem in zero-inflated data, we propose a new type of copula, rectified Gaussian copula.
arXiv Detail & Related papers (2023-04-02T13:43:37Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Low-rank Characteristic Tensor Density Estimation Part I: Foundations [38.05393186002834]
We propose a novel approach that builds upon tensor factorization tools.
In order to circumvent the curse of dimensionality, we introduce a low-rank model of this characteristic tensor.
We demonstrate the very promising performance of the proposed method using several measured datasets.
arXiv Detail & Related papers (2020-08-27T18:06:19Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.