TabADM: Unsupervised Tabular Anomaly Detection with Diffusion Models
- URL: http://arxiv.org/abs/2307.12336v1
- Date: Sun, 23 Jul 2023 14:02:33 GMT
- Title: TabADM: Unsupervised Tabular Anomaly Detection with Diffusion Models
- Authors: Guy Zamberg and Moshe Salhov and Ofir Lindenbaum and Amir Averbuch
- Abstract summary: We present a diffusion-based probabilistic model effective for unsupervised anomaly detection.
Our model is trained to learn the density of normal samples by utilizing a unique rejection scheme.
At inference, we identify anomalies as samples in low-density regions.
- Score: 5.314466196448187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tables are an abundant form of data with use cases across all scientific
fields. Real-world datasets often contain anomalous samples that can negatively
affect downstream analysis. In this work, we only assume access to contaminated
data and present a diffusion-based probabilistic model effective for
unsupervised anomaly detection. Our model is trained to learn the density of
normal samples by utilizing a unique rejection scheme to attenuate the
influence of anomalies on the density estimation. At inference, we identify
anomalies as samples in low-density regions. We use real data to demonstrate
that our method improves detection capabilities over baselines. Furthermore,
our method is relatively stable to the dimension of the data and does not
require extensive hyperparameter tuning.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
Most deep anomaly detection models are based on learning normality from datasets.
In practice, the normality assumption is often violated due to the nature of real data distributions.
We propose a learning framework to reduce this gap and achieve better normality representation.
arXiv Detail & Related papers (2023-09-18T02:36:19Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - Anomaly Detection with Variance Stabilized Density Estimation [49.46356430493534]
We present a variance-stabilized density estimation problem for maximizing the likelihood of the observed samples.
To obtain a reliable anomaly detector, we introduce a spectral ensemble of autoregressive models for learning the variance-stabilized distribution.
We have conducted an extensive benchmark with 52 datasets, demonstrating that our method leads to state-of-the-art results.
arXiv Detail & Related papers (2023-06-01T11:52:58Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
Anomaly detection suffered from the lack of anomalies due to the diversity of abnormalities and the difficulties of obtaining large-scale anomaly data.
We propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based anomaly detection paradigm.
Our method generates pseudo-anomaly data for both supervised and semi-supervised anomaly detection scenarios.
arXiv Detail & Related papers (2023-04-09T10:40:02Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
Anomaly detection presents a unique challenge in machine learning, due to the scarcity of labeled anomaly data.
Recent work attempts to mitigate such problems by augmenting training of deep anomaly detection models with additional labeled anomaly samples.
In this paper, we aim to understand the effect of a biased anomaly set on anomaly detection.
arXiv Detail & Related papers (2021-05-16T03:55:02Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Universal Data Anomaly Detection via Inverse Generative Adversary
Network [4.162663632560141]
No training data are available for the distribution of anomaly data.
A semi-supervised deep learning technique based on an inverse generative adversary network is proposed.
arXiv Detail & Related papers (2020-01-23T21:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.