論文の概要: AD-PT: Autonomous Driving Pre-Training with Large-scale Point Cloud
Dataset
- arxiv url: http://arxiv.org/abs/2306.00612v2
- Date: Mon, 10 Jul 2023 12:32:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 18:15:53.131343
- Title: AD-PT: Autonomous Driving Pre-Training with Large-scale Point Cloud
Dataset
- Title(参考訳): AD-PT:大規模ポイントクラウドデータセットによる自律走行事前訓練
- Authors: Jiakang Yuan, Bo Zhang, Xiangchao Yan, Tao Chen, Botian Shi, Yikang
Li, Yu Qiao
- Abstract要約: 知覚モデルが大規模なクラウドデータセットから学ぶことは、Autonomous Driving (AD)コミュニティの長期的なビジョンである。
我々は、ポイントクラウド事前トレーニングタスクを半教師付き問題として定式化し、少数のラベル付きおよび大規模ラベルなしのポイントクラウドデータを活用する。
我々は、異なるベースラインモデルの下で、nuScenesやKITTIを含む一連の下流認識ベンチマークにおいて、大幅な性能向上を達成する。
- 参考スコア(独自算出の注目度): 32.29833072399945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is a long-term vision for Autonomous Driving (AD) community that the
perception models can learn from a large-scale point cloud dataset, to obtain
unified representations that can achieve promising results on different tasks
or benchmarks. Previous works mainly focus on the self-supervised pre-training
pipeline, meaning that they perform the pre-training and fine-tuning on the
same benchmark, which is difficult to attain the performance scalability and
cross-dataset application for the pre-training checkpoint. In this paper, for
the first time, we are committed to building a large-scale pre-training
point-cloud dataset with diverse data distribution, and meanwhile learning
generalizable representations from such a diverse pre-training dataset. We
formulate the point-cloud pre-training task as a semi-supervised problem, which
leverages the few-shot labeled and massive unlabeled point-cloud data to
generate the unified backbone representations that can be directly applied to
many baseline models and benchmarks, decoupling the AD-related pre-training
process and downstream fine-tuning task. During the period of backbone
pre-training, by enhancing the scene- and instance-level distribution diversity
and exploiting the backbone's ability to learn from unknown instances, we
achieve significant performance gains on a series of downstream perception
benchmarks including Waymo, nuScenes, and KITTI, under different baseline
models like PV-RCNN++, SECOND, CenterPoint.
- Abstract(参考訳): 知覚モデルが大規模なポイントクラウドデータセットから学習し、さまざまなタスクやベンチマークで有望な結果を得ることができる統一された表現を得ることは、Autonomous Driving (AD)コミュニティの長期的なビジョンである。
以前の作業は、主に自己教師付き事前トレーニングパイプラインに焦点を当てており、同じベンチマークで事前トレーニングと微調整を行うため、事前トレーニングチェックポイント用のパフォーマンススケーラビリティとクロスデータセットアプリケーションを達成するのは難しい。
本稿では,このような多種多様な事前学習データセットから汎用表現を学習しながら,多種多様なデータ分布を持つ大規模事前学習型ポイントクラウドデータセットの構築に初めてコミットする。
我々は、ポイントクラウド事前学習タスクを半教師付き問題として定式化し、少数のラベル付きおよび大規模未ラベルのポイントクラウドデータを利用して、多くのベースラインモデルやベンチマークに直接適用可能な統一されたバックボーン表現を生成する。
バックボーン事前トレーニングの期間中,シーンレベルの分散の多様性を高め,未知のインスタンスから学習するバックボーンの能力を活用することで,PV-RCNN++,SECOND,CenterPointといったさまざまなベースラインモデルの下で,Waymo,nuScenes,KITTIといった一連の下流知覚ベンチマークにおいて,大幅なパフォーマンス向上を実現した。
関連論文リスト
- Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
リモートセンシング画像分類のための有望なアプローチとして,自己教師付き学習が登場している。
そこで本研究では,14の下流データセットにまたがる自己教師型事前学習戦略について検討し,その効果を評価する。
論文 参考訳(メタデータ) (2023-07-04T10:57:52Z) - SEPT: Towards Scalable and Efficient Visual Pre-Training [11.345844145289524]
自己教師付き事前トレーニングは、ダウンストリームタスクのパフォーマンスを改善するために大規模なラベルなしデータを活用する大きな可能性を示している。
タスク固有の自己教師型事前学習フレームワークを構築し,対象タスクに類似した分布を持つ未ラベルサンプルの事前学習が,大幅な性能向上をもたらすという単純な仮説に基づいて構築する。
論文 参考訳(メタデータ) (2022-12-11T11:02:11Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
我々は、さらなる事前学習段階の正則化として自己蒸留を提案する。
画像およびテキスト分類タスクのための様々なベンチマークデータセットにおける自己蒸留の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2022-09-30T02:25:12Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
トランスフォーマーに基づく教師付き事前訓練は、人物再識別(ReID)において大きなパフォーマンスを達成する
ImageNetとReIDデータセットのドメインギャップのため、通常、パフォーマンスを高めるために、より大きなトレーニング済みデータセットが必要です。
この研究は、データとモデル構造の観点から、事前トレーニングデータセットとReIDデータセットのギャップを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-11-23T18:59:08Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。