論文の概要: Towards Foundation Models on Graphs: An Analysis on Cross-Dataset Transfer of Pretrained GNNs
- arxiv url: http://arxiv.org/abs/2412.17609v1
- Date: Mon, 23 Dec 2024 14:28:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:23.903003
- Title: Towards Foundation Models on Graphs: An Analysis on Cross-Dataset Transfer of Pretrained GNNs
- Title(参考訳): グラフの基盤モデルに向けて:事前学習したGNNのクロスデータセット転送に関する分析
- Authors: Fabrizio Frasca, Fabian Jogl, Moshe Eliasof, Matan Ostrovsky, Carola-Bibiane Schönlieb, Thomas Gärtner, Haggai Maron,
- Abstract要約: 本研究では,事前学習したグラフニューラルネットワークがデータセット間で適用可能な範囲について検討する。
機能に依存しないまま特徴情報をキャプチャする拡張を提案する。
- 参考スコア(独自算出の注目度): 25.58407005007563
- License:
- Abstract: To develop a preliminary understanding towards Graph Foundation Models, we study the extent to which pretrained Graph Neural Networks can be applied across datasets, an effort requiring to be agnostic to dataset-specific features and their encodings. We build upon a purely structural pretraining approach and propose an extension to capture feature information while still being feature-agnostic. We evaluate pretrained models on downstream tasks for varying amounts of training samples and choices of pretraining datasets. Our preliminary results indicate that embeddings from pretrained models improve generalization only with enough downstream data points and in a degree which depends on the quantity and properties of pretraining data. Feature information can lead to improvements, but currently requires some similarities between pretraining and downstream feature spaces.
- Abstract(参考訳): グラフファウンデーションモデルに対する予備的な理解を深めるために、データセットにまたがる事前学習されたグラフニューラルネットワークの適用範囲について検討する。
我々は、純粋に構造的な事前学習アプローチを構築し、機能に依存しないまま、特徴情報をキャプチャーするための拡張を提案する。
下流タスクにおける事前学習モデルの評価を行い,各種トレーニングサンプルと事前学習データセットの選択について検討した。
予備的な結果から,事前学習したモデルからの埋め込みは,十分な下流データポイントと事前学習データの量や特性に依存する程度にのみ,一般化を改善することが示唆された。
機能情報は改善につながる可能性があるが、現在、事前訓練と下流の機能空間の間に類似点がいくつか必要である。
関連論文リスト
- Strategies for Pretraining Neural Operators [5.812284760539713]
偏微分方程式(PDE)モデリングの事前トレーニングは、一般化性と性能を改善するために、データセットをまたいだニューラルネットワークのスケーリングを約束している。
我々は,事前学習のダイナミクスを特徴付けるために,アーキテクチャ選択を最適化することなく,事前学習手法を比較した。
プレトレーニングはモデルとデータセットの選択に大きく依存するが、一般的な転送学習や物理ベースのプレトレーニング戦略が最も有効である。
論文 参考訳(メタデータ) (2024-06-12T17:56:46Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Better with Less: A Data-Active Perspective on Pre-Training Graph Neural
Networks [39.71761440499148]
グラフニューラルネットワーク(GNN)の事前トレーニングは、ラベルのないデータで下流タスクの転送可能な知識を学ぶことを目的としている。
より少ないが慎重に選択されたデータはGNNモデルに入力される。
実験の結果,提案手法により,より少ないトレーニングデータとより優れたダウンストリーム性能を有する効率的な事前学習モデルが得られることがわかった。
論文 参考訳(メタデータ) (2023-11-02T07:09:59Z) - AD-PT: Autonomous Driving Pre-Training with Large-scale Point Cloud
Dataset [25.935496432142976]
知覚モデルが大規模なクラウドデータセットから学ぶことは、Autonomous Driving (AD)コミュニティの長期的なビジョンである。
我々は、ポイントクラウド事前トレーニングタスクを半教師付き問題として定式化し、少数のラベル付きおよび大規模ラベルなしのポイントクラウドデータを活用する。
我々は、異なるベースラインモデルの下で、nuScenesやKITTIを含む一連の下流認識ベンチマークにおいて、大幅な性能向上を達成する。
論文 参考訳(メタデータ) (2023-06-01T12:32:52Z) - When to Pre-Train Graph Neural Networks? From Data Generation
Perspective! [19.239863500722983]
グラフ事前トレーニングは、ラベルのないグラフデータから転送可能な知識を取得し、下流のパフォーマンスを改善することを目的としている。
本稿では,事前学習のタイミングを問う汎用フレームワークW2PGNNを提案する。
W2PGNNは、グラフ事前トレーニングモデルの適用範囲、事前トレーニングの実現可能性、下流のパフォーマンスを高めるために事前トレーニングデータを選択する支援の3つの幅広いアプリケーションを提供している。
論文 参考訳(メタデータ) (2023-03-29T05:05:02Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
我々は、さらなる事前学習段階の正則化として自己蒸留を提案する。
画像およびテキスト分類タスクのための様々なベンチマークデータセットにおける自己蒸留の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2022-09-30T02:25:12Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) は、ある側面に対する感情の極性を決定することを目的としている。
事前トレーニングと下流ABSAデータセットの間には、常に深刻なドメインシフトが存在する。
我々は,バニラ・プレトレイン・ファインチューンパイプラインにアライメント事前訓練フレームワークを導入する。
論文 参考訳(メタデータ) (2021-10-26T04:03:45Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
大規模未ラベルテキストデータ上での事前学習言語モデル(LM)により、ダウンストリームのパフォーマンスが極めて容易になる。
我々は,事前学習データに含まれる特定の特徴について,セマンティクス以外では,下流タスクのスクラッチからトレーニングしたデータよりも,事前学習したLMを優れているか検討した。
論文 参考訳(メタデータ) (2021-09-08T10:39:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。