論文の概要: From Temporal to Contemporaneous Iterative Causal Discovery in the
Presence of Latent Confounders
- arxiv url: http://arxiv.org/abs/2306.00624v1
- Date: Thu, 1 Jun 2023 12:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 16:12:11.104078
- Title: From Temporal to Contemporaneous Iterative Causal Discovery in the
Presence of Latent Confounders
- Title(参考訳): 潜伏する共同創設者の存在下での時間的から同時的な反復的因果発見
- Authors: Raanan Y. Rohekar, Shami Nisimov, Yaniv Gurwicz, Gal Novik
- Abstract要約: 本稿では,観測時系列データから因果構造を学習するための制約に基づくアルゴリズムを提案する。
我々は、時間的・同時的な因果関係を持つ離散的、定常的な構造的ベクトル自己回帰過程を仮定する。
提案アルゴリズムは、時間的長期関係を短時間で学習することで、因果グラフを徐々に洗練し、同時期関係を最後に学習する。
- 参考スコア(独自算出の注目度): 6.365889364810238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a constraint-based algorithm for learning causal structures from
observational time-series data, in the presence of latent confounders. We
assume a discrete-time, stationary structural vector autoregressive process,
with both temporal and contemporaneous causal relations. One may ask if
temporal and contemporaneous relations should be treated differently. The
presented algorithm gradually refines a causal graph by learning long-term
temporal relations before short-term ones, where contemporaneous relations are
learned last. This ordering of causal relations to be learnt leads to a
reduction in the required number of statistical tests. We validate this
reduction empirically and demonstrate that it leads to higher accuracy for
synthetic data and more plausible causal graphs for real-world data compared to
state-of-the-art algorithms.
- Abstract(参考訳): 本稿では,観測時系列データから因果構造を学習するための制約に基づくアルゴリズムを提案する。
我々は時間的および同時的因果関係を持つ離散時間、定常的構造的ベクトル自己回帰過程を仮定する。
時間的・同時的な関係を別々に扱うべきかを問うことができる。
提案アルゴリズムは,同時期関係が最後に学習される短期関係の前に長期時間関係を学習することで,因果グラフを徐々に洗練させる。
この因果関係の順序付けは、必要な統計テストの数を減らすことに繋がる。
この削減を経験的に検証し,実世界のデータに対する合成データの精度と,最先端のアルゴリズムと比較してより正確な因果グラフをもたらすことを実証する。
関連論文リスト
- Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
時系列データによる因果発見は、スライス内(同時)とスライス間(時差)の両方の因果関係を捉えることを目的としている。
我々は, textbfShort-textbfTerm textbfInvariance に着目した勾配に基づく因果探索手法 STIC を提案する。
論文 参考訳(メタデータ) (2024-08-15T08:43:28Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Causal discovery for time series with constraint-based model and PMIME
measure [0.0]
本稿では,因果探索アルゴリズムと情報理論に基づく測度を組み合わせた時系列データにおける因果関係の発見手法を提案する。
提案手法を複数のシミュレーションデータセット上で評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2023-05-31T09:38:50Z) - TC-GAT: Graph Attention Network for Temporal Causality Discovery [6.974417592057705]
因果関係はしばしば時間的要素と絡み合っており、原因から効果への進行は瞬間的ではなく、時間的次元において収束している。
本稿では,時間的・因果関係を統合したテキストから因果関係を抽出する手法を提案する。
本稿では,時間的関係に重みを割り当てるグラフアテンション機構を採用し,因果知識グラフを利用して隣接行列を決定する新しいモデルTC-GATを提案する。
論文 参考訳(メタデータ) (2023-04-21T02:26:42Z) - DOMINO: Visual Causal Reasoning with Time-Dependent Phenomena [59.291745595756346]
本研究では,時間遅延のウィンドウに関連する因果関係の発見に人間が参加できる視覚分析手法を提案する。
具体的には、論理に基づく因果関係の確立した手法を活用し、分析者が潜在的な原因の重要性を検証できるようにする。
効果は他の効果の原因となりうるので,本手法で検出した時間的要因と効果の関係を視覚フロー図にまとめることができる。
論文 参考訳(メタデータ) (2023-03-12T03:40:21Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
数発のリンク予測を行うため,本手法の現況を一般化したモデルスペクトルについて検討する。
単純なゼロショットベースライン – 関係性固有の情報を無視する – が驚くほど高いパフォーマンスを実現しているのが分かります。
慎重に構築された合成データセットの実験では、関係の例がいくつかあるだけで、モデルがきめ細かな構造情報を使用するのを基本的に制限することが示されている。
論文 参考訳(メタデータ) (2021-02-05T21:04:31Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
時間的知識グラフにおけるリンク予測のためのワンショット学習フレームワークを提案する。
提案手法は,実体間の時間的相互作用を効果的に符号化する自己認識機構を用いる。
実験の結果,提案アルゴリズムは2つのよく研究されたベンチマークにおいて,アートベースラインの状態よりも優れていた。
論文 参考訳(メタデータ) (2020-10-23T03:24:44Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
本稿では,時系列データから因果関係を推定する新しいフレームワークであるAmortized Causal Discoveryを提案する。
本研究では,本手法が変分モデルとして実装され,因果発見性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:59:12Z) - Inferring Individual Level Causal Models from Graph-based Relational
Time Series [3.332377849866735]
グラフに基づく関係時系列データに対する因果推論の問題を定式化する。
ノードの局所因果効果を正確に推定するために,グラフトポロジと時系列の両方を活用する因果推論モデルを提案する。
論文 参考訳(メタデータ) (2020-01-16T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。