Learning Prescriptive ReLU Networks
- URL: http://arxiv.org/abs/2306.00651v1
- Date: Thu, 1 Jun 2023 13:17:29 GMT
- Title: Learning Prescriptive ReLU Networks
- Authors: Wei Sun and Asterios Tsiourvas
- Abstract summary: We study the problem of learning optimal policy from a set of discrete treatment options using observational data.
We propose a piecewise linear neural network model that can balance strong prescriptive performance and interpretability.
- Score: 3.092691764363848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning optimal policy from a set of discrete
treatment options using observational data. We propose a piecewise linear
neural network model that can balance strong prescriptive performance and
interpretability, which we refer to as the prescriptive ReLU network, or
P-ReLU. We show analytically that this model (i) partitions the input space
into disjoint polyhedra, where all instances that belong to the same partition
receive the same treatment, and (ii) can be converted into an equivalent
prescriptive tree with hyperplane splits for interpretability. We demonstrate
the flexibility of the P-ReLU network as constraints can be easily incorporated
with minor modifications to the architecture. Through experiments, we validate
the superior prescriptive accuracy of P-ReLU against competing benchmarks.
Lastly, we present examples of interpretable prescriptive trees extracted from
trained P-ReLUs using a real-world dataset, for both the unconstrained and
constrained scenarios.
Related papers
- Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
We design a predictive layer for structured-output prediction (SOP)
It can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints.
Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space.
arXiv Detail & Related papers (2022-06-01T12:02:38Z) - Structural Learning of Probabilistic Sentential Decision Diagrams under
Partial Closed-World Assumption [127.439030701253]
Probabilistic sentential decision diagrams are a class of structured-decomposable circuits.
We propose a new scheme based on a partial closed-world assumption: data implicitly provide the logical base of the circuit.
Preliminary experiments show that the proposed approach might properly fit training data, and generalize well to test data, provided that these remain consistent with the underlying logical base.
arXiv Detail & Related papers (2021-07-26T12:01:56Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
We propose an adaptive sampling algorithm based on the principle of optimism, and derive theoretical bounds on its performance.
By deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general.
arXiv Detail & Related papers (2021-03-01T04:58:27Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
Posterior-Aided Regularization (PAR) is applicable to learning the density estimator, regardless of the model structure.
We provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network.
arXiv Detail & Related papers (2021-02-15T16:59:30Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
We propose a new approach based on differential inclusions of inverse scale spaces.
We show that DessiLBI unveils "winning tickets" in early epochs.
arXiv Detail & Related papers (2020-07-04T04:40:16Z) - Controlling for sparsity in sparse factor analysis models: adaptive
latent feature sharing for piecewise linear dimensionality reduction [2.896192909215469]
We propose a simple and tractable parametric feature allocation model which can address key limitations of current latent feature decomposition techniques.
We derive a novel adaptive Factor analysis (aFA), as well as, an adaptive probabilistic principle component analysis (aPPCA) capable of flexible structure discovery and dimensionality reduction.
We show that aPPCA and aFA can infer interpretable high level features both when applied on raw MNIST and when applied for interpreting autoencoder features.
arXiv Detail & Related papers (2020-06-22T16:09:11Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.