Non-perturbative theory of spontaneous parametric down-conversion in
open and dispersive optical systems
- URL: http://arxiv.org/abs/2306.00781v3
- Date: Wed, 8 Nov 2023 11:18:06 GMT
- Title: Non-perturbative theory of spontaneous parametric down-conversion in
open and dispersive optical systems
- Authors: Aleksa Krsti\'c, Frank Setzpfandt and Sina Saravi
- Abstract summary: This formalism opens the way for description and design of arbitrary complex and/or open nanostructured nonlinear optical systems.
We numerically investigate the scenario of integrated quantum spectroscopy with undetected photons, in the high-gain regime, and uncover novel gain-dependent effects in the performance of the system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a non-perturbative formulation based on the Green-function
quantization method, that can describe spontaneous parametric down-conversion
in the high-gain regime in nonlinear optical structures with arbitrary amount
of loss and dispersion. This formalism opens the way for description and design
of arbitrary complex and/or open nanostructured nonlinear optical systems in
quantum technology applications, such as squeezed-light generation,
nonlinearity-based quantum sensing, and hybrid quantum systems mediated by
nonlinear interactions. As an example case, we numerically investigate the
scenario of integrated quantum spectroscopy with undetected photons, in the
high-gain regime, and uncover novel gain-dependent effects in the performance
of the system.
Related papers
- Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator [6.098636361994834]
We introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors.
We show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
arXiv Detail & Related papers (2024-02-29T16:22:13Z) - Irreversibility in an optical parametric driven optomechanical system [0.0]
We find a dramatic deviation in the irreversibility and quantum mutual information for small detuning.
Our analysis shows that the system irreversibility can be reduced by choosing the appropriate phase of the self-induced nonlinearity.
arXiv Detail & Related papers (2023-03-20T13:31:37Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - QOptCraft: A Python package for the design and study of linear optical
quantum systems [0.0]
The package QOptCraft gives a collection of methods to solve some of the most usual problems when designing quantum experiments with linear interferometers.
The routines are chosen to avoid usual numerical problems when dealing with the unitary matrices that appear in the description of linear systems.
arXiv Detail & Related papers (2021-08-13T12:05:21Z) - Generation of entangled photons via parametric down-conversion in
semiconductor lasers and integrated quantum photonic systems [0.0]
We develop a nonperturbative quantum theory of parametric down-conversion of waveguide modes.
We extend our theory to the regime of quantized pump fields with a new approach based on the propagation equation for the state vector.
Our formalism is applicable to a wide variety of three-wave mixing propagation problems.
arXiv Detail & Related papers (2021-08-07T21:41:46Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Enhanced generation of non-degenerate photon-pairs in nonlinear
metasurfaces [55.41644538483948]
Non-degenerate photon-pair generation can enable orders-of-surface enhancement of the photon rate and spectral brightness.
We show that the entanglement of the photon-pairs can be tuned by varying the pump polarization, which can underpin future advances and applications of ultra-compact quantum light sources.
arXiv Detail & Related papers (2021-04-15T08:20:17Z) - Dispersion-engineered $\chi^{(2)}$ nanophotonics: a flexible tool for
nonclassical light [0.0]
This article reviews recent progress in quasi-phasematched $chi(2)$ nonlinear nanophotonics.
We establish design rules for the bandwidth and interaction lengths of various nonlinear processes, and provide examples for how these processes can be engineered in nanophotonic devices.
arXiv Detail & Related papers (2021-03-03T10:16:04Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z) - Quantum nonlinear metasurfaces [68.8204255655161]
We outline a general quantum theory of spontaneous photon-pair generation in arbitrary nonlinear photonic structures.
We discuss the first experimental results demonstrating photon-pair generation in a single nonlinear nanoantenna.
arXiv Detail & Related papers (2020-08-22T14:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.