論文の概要: BitE : Accelerating Learned Query Optimization in a Mixed-Workload
Environment
- arxiv url: http://arxiv.org/abs/2306.00845v2
- Date: Fri, 2 Jun 2023 01:32:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 11:14:12.863832
- Title: BitE : Accelerating Learned Query Optimization in a Mixed-Workload
Environment
- Title(参考訳): BitE : 混合負荷環境における学習クエリ最適化の高速化
- Authors: Yuri Kim, Yewon Choi, Yujung Gil, Sanghee Lee, Heesik Shin and Jaehyok
Chong
- Abstract要約: BitEは、データベース統計とメタデータを使用して、学習したクエリをチューニングしてパフォーマンスを向上させる、新しいアンサンブル学習モデルである。
我々のモデルは従来の手法に比べて19.6%改善されたクエリと15.8%改善されたクエリを実現している。
- 参考スコア(独自算出の注目度): 0.36700088931938835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although the many efforts to apply deep reinforcement learning to query
optimization in recent years, there remains room for improvement as query
optimizers are complex entities that require hand-designed tuning of workloads
and datasets. Recent research present learned query optimizations results
mostly in bulks of single workloads which focus on picking up the unique traits
of the specific workload. This proves to be problematic in scenarios where the
different characteristics of multiple workloads and datasets are to be mixed
and learned together. Henceforth, in this paper, we propose BitE, a novel
ensemble learning model using database statistics and metadata to tune a
learned query optimizer for enhancing performance. On the way, we introduce
multiple revisions to solve several challenges: we extend the search space for
the optimal Abstract SQL Plan(represented as a JSON object called ASP) by
expanding hintsets, we steer the model away from the default plans that may be
biased by configuring the experience with all unique plans of queries, and we
deviate from the traditional loss functions and choose an alternative method to
cope with underestimation and overestimation of reward. Our model achieves
19.6% more improved queries and 15.8% less regressed queries compared to the
existing traditional methods whilst using a comparable level of resources.
- Abstract(参考訳): 近年、クエリ最適化に深層強化学習を適用する努力が増えているが、クエリオプティマイザが複雑なエンティティであり、ワークロードとデータセットを手作業で調整する必要があるため、改善の余地は残されている。
最近の研究では、クエリ最適化の結果は、主に特定のワークロードのユニークな特徴を拾い上げることに焦点を当てた、単一のワークロードのバルクで得られています。
これは、複数のワークロードとデータセットの異なる特性が混在して学習されるシナリオで問題となる。
そこで本研究では,データベース統計とメタデータを用いた新しいアンサンブル学習モデルであるbitsを提案する。
ヒントセットを拡張することで、最適なAbstract SQL Plan(ASPと呼ばれるJSONオブジェクトとして表現される)の検索スペースを拡張し、クエリのすべてのユニークな計画でエクスペリエンスを設定することでバイアスを受ける可能性のあるデフォルトプランからモデルを分離し、従来の損失関数から逸脱し、過小評価と報酬の過大評価に対処する代替方法を選択する。
我々のモデルは、既存の従来の方法に比べて19.6%改良されたクエリと15.8%のレグレッシブクエリを実現し、同等のレベルのリソースを使用する。
関連論文リスト
- A Distributed Collaborative Retrieval Framework Excelling in All Queries and Corpora based on Zero-shot Rank-Oriented Automatic Evaluation [46.33857318525812]
分散協調検索フレームワーク(DCRF)を提案する。
様々な検索モデルを統合システムに統合し、ユーザのクエリに対して最適な結果を動的に選択する。
RankGPTやListT5のような効果的なリストワイドメソッドに匹敵するパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2024-12-16T14:55:57Z) - HERO: Hint-Based Efficient and Reliable Query Optimizer [0.0]
本稿では,より優れた実行計画を実現するためのクエリヒントを提供する,学習クエリ最適化のための新しいモデルを提案する。
このモデルは、学習したヒントベースのクエリ最適化において、信頼できるヒントレコメンデーション、効率的なヒント探索、高速推論という3つの課題に対処する。
私たちのモデルは解釈可能でデバッグが容易です。
論文 参考訳(メタデータ) (2024-12-03T10:58:34Z) - Data Fusion of Synthetic Query Variants With Generative Large Language Models [1.864807003137943]
本研究は,データ融合実験において,命令調整型大規模言語モデルによって生成される合成クエリ変種を用いることの実現可能性について検討する。
我々は、プロンプトとデータ融合の原則を生かした、軽量で教師なしで費用効率のよいアプローチを導入します。
解析の結果,合成クエリの変種に基づくデータ融合は,単一クエリのベースラインよりもはるかに優れており,擬似関連フィードバック手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-06T12:54:27Z) - The Unreasonable Effectiveness of LLMs for Query Optimization [4.50924404547119]
クエリテキストの埋め込みには,クエリ最適化に有用な意味情報が含まれていることを示す。
少数の組込みクエリベクタで訓練された代替クエリプラン間の単純なバイナリが既存のシステムより優れていることを示す。
論文 参考訳(メタデータ) (2024-11-05T07:10:00Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
我々は,BPRモデルの特徴を考察し,その性能への影響を示し,オープンソースのBPR実装について検討する。
分析の結果,これらの実装とオリジナルのBPR論文の矛盾が明らかとなり,特定の実装に対して最大50%の性能低下がみられた。
BPRモデルは、トップnのレコメンデーションタスクにおける最先端メソッドに近いパフォーマンスレベルを達成でき、特定のデータセット上でもパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-09-21T18:39:53Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - JoinGym: An Efficient Query Optimization Environment for Reinforcement
Learning [58.71541261221863]
結合順序選択(JOS)は、クエリの実行コストを最小化するために結合操作を順序付けする問題である。
木質強化学習(RL)のためのクエリ最適化環境JoinGymを提案する。
JoinGymは内部で、事前計算されたデータセットから中間結果の濃度を調べることで、クエリプランのコストをシミュレートする。
論文 参考訳(メタデータ) (2023-07-21T17:00:06Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
本稿では,統合学習と呼ばれるチューニング問題の新たな定式化を提案する。
このような設定では、単一のタスクをチューニングするよりも、全体の最適化時間に関心があります。
我々は,XGBoostアルゴリズムの実証研究とMIMIC-IV医療データベースから抽出した予測タスクの収集を通じて,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-01-27T21:38:53Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
代替アプローチを実現するフレームワークであるIFAQ(Iterative Functional Aggregate Queries)を紹介する。
IFAQは、特徴抽出クエリと学習タスクを、IFAQのドメイン固有言語で与えられた1つのプログラムとして扱う。
IFAQ の Scala 実装が mlpack,Scikit,特殊化を数桁で上回り,線形回帰木モデルや回帰木モデルを複数の関係データセット上で処理可能であることを示す。
論文 参考訳(メタデータ) (2020-01-10T16:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。