論文の概要: Data Fusion of Synthetic Query Variants With Generative Large Language Models
- arxiv url: http://arxiv.org/abs/2411.03881v1
- Date: Wed, 06 Nov 2024 12:54:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-09 19:50:57.266320
- Title: Data Fusion of Synthetic Query Variants With Generative Large Language Models
- Title(参考訳): 生成型大規模言語モデルを用いた合成クエリ変数のデータ融合
- Authors: Timo Breuer,
- Abstract要約: 本研究は,データ融合実験において,命令調整型大規模言語モデルによって生成される合成クエリ変種を用いることの実現可能性について検討する。
我々は、プロンプトとデータ融合の原則を生かした、軽量で教師なしで費用効率のよいアプローチを導入します。
解析の結果,合成クエリの変種に基づくデータ融合は,単一クエリのベースラインよりもはるかに優れており,擬似関連フィードバック手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 1.864807003137943
- License:
- Abstract: Considering query variance in information retrieval (IR) experiments is beneficial for retrieval effectiveness. Especially ranking ensembles based on different topically related queries retrieve better results than rankings based on a single query alone. Recently, generative instruction-tuned Large Language Models (LLMs) improved on a variety of different tasks in capturing human language. To this end, this work explores the feasibility of using synthetic query variants generated by instruction-tuned LLMs in data fusion experiments. More specifically, we introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques. In our experiments, LLMs produce more effective queries when provided with additional context information on the topic. Furthermore, our analysis based on four TREC newswire benchmarks shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods. We publicly share the code and query datasets with the community as resources for follow-up studies.
- Abstract(参考訳): 情報検索 (IR) 実験におけるクエリ分散を考慮することは, 検索効率に有用である。
特に、異なるトポロジ関連クエリに基づくランキングアンサンブルでは、単一のクエリのみに基づくランキングよりも優れた結果が得られる。
近年,ジェネレーティブ・インストラクション・チューニング型大規模言語モデル (LLM) は,人間の言語を捉える際の様々なタスクを改善している。
そこで本研究では,データ融合実験において,命令調整 LLM が生成する合成クエリ不変量の有用性について検討する。
より具体的には、プロンプトとデータ融合の原則を利用する軽量で教師なしで費用効率のよいアプローチを導入します。
我々の実験では、LLMはトピックに関する追加のコンテキスト情報を提供する場合、より効果的なクエリを生成する。
さらに, TRECニュースワイヤの4つのベンチマークによる解析結果から, 合成クエリの変種に基づくデータ融合は, 単一クエリによるベースラインよりも有意に優れており, 擬似関連フィードバック手法よりも優れていることが示された。
フォローアップ研究のリソースとして、コードとクエリデータセットをコミュニティに公開しています。
関連論文リスト
- DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTrieverは、隠れた状態の重み付けを学習する新しいデモ検索フレームワークである。
提案手法は1ショットNL2タスクにおける最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2024-06-12T06:33:54Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
大規模言語モデル(LLM)は、テキストからタスクへの微調整アプローチを大幅に上回る、ICL(In-context Learning)ベースの手法を実現している。
本研究は,LLMのプロンプトに対する感受性を考察し,複数のプロンプトを活用してより広い探索空間を探索する手法を提案する。
生成したクエリの精度と効率の両面から,BIRD上に新たなSOTA性能を確立する。
論文 参考訳(メタデータ) (2024-05-13T04:59:32Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
テキストと知識ベースを用いた大規模半構造検索ベンチマークSTARKを開発した。
本ベンチマークでは, 製品検索, 学術論文検索, 精密医療におけるクエリの3分野について検討した。
多様なリレーショナル情報と複雑なテキスト特性を統合した,現実的なユーザクエリを合成する,新しいパイプラインを設計する。
論文 参考訳(メタデータ) (2024-04-19T22:54:54Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
ExaRanker-Openを導入し、オープンソース言語モデルを適用して、説明を生成する。
以上の結果から,LLMのサイズが大きくなるにつれて,説明の組み込みが神経ランク付けを継続的に促進することが明らかとなった。
論文 参考訳(メタデータ) (2024-02-09T11:23:14Z) - Large Language Model as Attributed Training Data Generator: A Tale of
Diversity and Bias [92.41919689753051]
大規模言語モデル(LLM)は、最近、様々な自然言語処理(NLP)タスクのためのトレーニングデータジェネレータとして活用されている。
本稿では,多様な属性を持つプロンプトを用いたトレーニングデータ生成について検討する。
属性付きプロンプトは、結果のモデルの性能の観点から、単純なクラス条件プロンプトより優れていることを示す。
論文 参考訳(メタデータ) (2023-06-28T03:31:31Z) - BitE : Accelerating Learned Query Optimization in a Mixed-Workload
Environment [0.36700088931938835]
BitEは、データベース統計とメタデータを使用して、学習したクエリをチューニングしてパフォーマンスを向上させる、新しいアンサンブル学習モデルである。
我々のモデルは従来の手法に比べて19.6%改善されたクエリと15.8%改善されたクエリを実現している。
論文 参考訳(メタデータ) (2023-06-01T16:05:33Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。