論文の概要: Edge-based Denoising Image Compression
- arxiv url: http://arxiv.org/abs/2409.10978v1
- Date: Tue, 17 Sep 2024 08:20:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:28:59.448621
- Title: Edge-based Denoising Image Compression
- Title(参考訳): エッジベースデノイング画像圧縮
- Authors: Ryugo Morita, Hitoshi Nishimura, Ko Watanabe, Andreas Dengel, Jinjia Zhou,
- Abstract要約: 深層学習に基づく画像圧縮は、研究の重要な領域として現れている。
本稿では,拡散モデルを用いた新しい圧縮モデルを提案する。
我々のモデルは画像の品質と圧縮効率の点で、優れた結果または同等の結果が得られる。
- 参考スコア(独自算出の注目度): 10.477417679208845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep learning-based image compression, particularly through generative models, has emerged as a pivotal area of research. Despite significant advancements, challenges such as diminished sharpness and quality in reconstructed images, learning inefficiencies due to mode collapse, and data loss during transmission persist. To address these issues, we propose a novel compression model that incorporates a denoising step with diffusion models, significantly enhancing image reconstruction fidelity by sub-information(e.g., edge and depth) from leveraging latent space. Empirical experiments demonstrate that our model achieves superior or comparable results in terms of image quality and compression efficiency when measured against the existing models. Notably, our model excels in scenarios of partial image loss or excessive noise by introducing an edge estimation network to preserve the integrity of reconstructed images, offering a robust solution to the current limitations of image compression.
- Abstract(参考訳): 近年,特に生成モデルによる深層学習に基づく画像圧縮が重要な研究領域として浮上している。
大幅な進歩にもかかわらず、再構成された画像のシャープネスと品質の低下、モード崩壊による非効率の学習、送信時のデータ損失といった課題は継続した。
これらの問題に対処するため,拡散モデルにデノナイジングステップを組み込んだ新しい圧縮モデルを提案し,潜時空間の活用によるサブ情報(e, edge, depth)による画像再構成の忠実度を著しく向上させる。
実験により,既存のモデルと比較した場合,画像の画質や圧縮効率の点で,本モデルが優れているか同等の結果が得られることを示した。
特に,再構成画像の完全性を維持するためにエッジ推定ネットワークを導入し,画像圧縮の現在の限界に対する堅牢な解決策を提供することにより,部分的画像損失や過度ノイズのシナリオに優れる。
関連論文リスト
- Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
この研究は、能動的視覚言語モデルと合成分解パイプラインを活用して、野生(ワイルドIR)における画像復元を学習する。
我々の基底拡散モデルは画像復元SDE(IR-SDE)である。
論文 参考訳(メタデータ) (2024-04-15T12:34:21Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
論文 参考訳(メタデータ) (2023-06-01T20:21:05Z) - Restoring Vision in Adverse Weather Conditions with Patch-Based
Denoising Diffusion Models [8.122270502556374]
本稿では,拡散確率モデルに基づく新しいパッチベースの画像復元アルゴリズムを提案する。
我々は,気象特性とマルチウェザー画像復元の両面において,最先端の性能を実現するためのアプローチを実証する。
論文 参考訳(メタデータ) (2022-07-29T11:52:41Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。