Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations
- URL: http://arxiv.org/abs/2306.01125v1
- Date: Thu, 1 Jun 2023 20:21:05 GMT
- Title: Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations
- Authors: Yang Sui, Zhuohang Li, Ding Ding, Xiang Pan, Xiaozhong Xu, Shan Liu,
Zhenzhong Chen
- Abstract summary: We introduce an attack approach designed to effectively degrade the reconstruction quality of Learned Image Compression (LIC)
We generate adversarial examples by introducing a Frobenius norm-based loss function to maximize the discrepancy between original images and reconstructed adversarial examples.
Experiments conducted on the Kodak dataset using various LIC models demonstrate effectiveness.
- Score: 69.25683256447044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learned Image Compression (LIC) has recently become the trending technique
for image transmission due to its notable performance. Despite its popularity,
the robustness of LIC with respect to the quality of image reconstruction
remains under-explored. In this paper, we introduce an imperceptible attack
approach designed to effectively degrade the reconstruction quality of LIC,
resulting in the reconstructed image being severely disrupted by noise where
any object in the reconstructed images is virtually impossible. More
specifically, we generate adversarial examples by introducing a Frobenius
norm-based loss function to maximize the discrepancy between original images
and reconstructed adversarial examples. Further, leveraging the insensitivity
of high-frequency components to human vision, we introduce Imperceptibility
Constraint (IC) to ensure that the perturbations remain inconspicuous.
Experiments conducted on the Kodak dataset using various LIC models demonstrate
effectiveness. In addition, we provide several findings and suggestions for
designing future defenses.
Related papers
- Edge-based Denoising Image Compression [10.477417679208845]
Deep learning-based image compression has emerged as a pivotal area of research.
We propose a novel compression model that incorporates a denoising step with diffusion models.
Our model achieves superior or comparable results in terms of image quality and compression efficiency.
arXiv Detail & Related papers (2024-09-17T08:20:26Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - Image Reconstruction using Enhanced Vision Transformer [0.08594140167290097]
We propose a novel image reconstruction framework which can be used for tasks such as image denoising, deblurring or inpainting.
The model proposed in this project is based on Vision Transformer (ViT) that takes 2D images as input and outputs embeddings.
We incorporate four additional optimization techniques in the framework to improve the model reconstruction capability.
arXiv Detail & Related papers (2023-07-11T02:14:18Z) - DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency [24.5360032541275]
Diffusion models have established new state of the art in a multitude of computer vision tasks, including image restoration.
We propose a novel framework for inverse problem solving, namely we assume that the observation comes from a degradation process that gradually degrades and noises the original clean image.
Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping.
arXiv Detail & Related papers (2023-03-25T04:37:20Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Improving Multi-generation Robustness of Learned Image Compression [16.86614420872084]
We show that LIC can achieve comparable performance to the first compression of BPG even after 50 times reencoding without any change of the network structure.
arXiv Detail & Related papers (2022-10-31T03:26:11Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
In this work, we propose a novel invertible framework to model the bidirectional degradation and restoration from a new perspective.
We develop invertible models to generate valid degraded images and transform the distribution of lost contents.
Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable.
arXiv Detail & Related papers (2022-10-09T06:58:58Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.