Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms
- URL: http://arxiv.org/abs/2306.01213v4
- Date: Fri, 23 Aug 2024 22:01:07 GMT
- Title: Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms
- Authors: Aneesh Komanduri, Yongkai Wu, Feng Chen, Xintao Wu,
- Abstract summary: We propose a framework for learning causally disentangled representations supervised by causally related observed labels.
We show that our framework induces highly disentangled causal factors, improves interventional robustness, and is compatible with counterfactual generation.
- Score: 17.074858228123706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning disentangled causal representations is a challenging problem that has gained significant attention recently due to its implications for extracting meaningful information for downstream tasks. In this work, we define a new notion of causal disentanglement from the perspective of independent causal mechanisms. We propose ICM-VAE, a framework for learning causally disentangled representations supervised by causally related observed labels. We model causal mechanisms using nonlinear learnable flow-based diffeomorphic functions to map noise variables to latent causal variables. Further, to promote the disentanglement of causal factors, we propose a causal disentanglement prior learned from auxiliary labels and the latent causal structure. We theoretically show the identifiability of causal factors and mechanisms up to permutation and elementwise reparameterization. We empirically demonstrate that our framework induces highly disentangled causal factors, improves interventional robustness, and is compatible with counterfactual generation.
Related papers
- Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Phenomenological Causality [14.817342045377842]
We propose a notion of 'phenomenological causality' whose basic concept is a set of elementary actions.
We argue that it is consistent with the causal Markov condition when the system under consideration interacts with other variables that control the elementary actions.
arXiv Detail & Related papers (2022-11-15T13:05:45Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - On Causally Disentangled Representations [18.122893077772993]
We present an analysis of disentangled representations through the notion of disentangled causal process.
We show that our metrics capture the desiderata of disentangled causal process.
We perform an empirical study on state of the art disentangled representation learners using our metrics and dataset to evaluate them from causal perspective.
arXiv Detail & Related papers (2021-12-10T18:56:27Z) - Learning Generalized Gumbel-max Causal Mechanisms [31.64007831043909]
We argue for choosing a causal mechanism that is best under a quantitative criteria such as minimizing variance when estimating counterfactual treatment effects.
We show that they can be trained to minimize counterfactual effect variance and other losses on a distribution of queries of interest.
arXiv Detail & Related papers (2021-11-11T22:02:20Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.