論文の概要: Break a Lag: Triple Exponential Moving Average for Enhanced Optimization
- arxiv url: http://arxiv.org/abs/2306.01423v3
- Date: Mon, 09 Dec 2024 16:59:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 23:11:43.306222
- Title: Break a Lag: Triple Exponential Moving Average for Enhanced Optimization
- Title(参考訳): break a Lag: 最適化のための3つの指数移動平均値
- Authors: Roi Peleg, Yair Smadar, Teddy Lazebnik, Assaf Hoogi,
- Abstract要約: 本稿では,三重指数移動平均のパワーを利用する新しい最適化手法であるFAMEを紹介する。
FAMEはデータダイナミクスに対する応答性を高め、トレンド識別ラグを緩和し、学習効率を最適化する。
包括的評価は、画像分類、オブジェクト検出、セマンティックセグメンテーションを含む様々なコンピュータビジョンタスクを含み、FAMEを30の異なるアーキテクチャに統合する。
- 参考スコア(独自算出の注目度): 2.0199251985015434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of deep learning models is critically dependent on sophisticated optimization strategies. While existing optimizers have shown promising results, many rely on first-order Exponential Moving Average (EMA) techniques, which often limit their ability to track complex gradient trends accurately. This fact can lead to a significant lag in trend identification and suboptimal optimization, particularly in highly dynamic gradient behavior. To address this fundamental limitation, we introduce Fast Adaptive Moment Estimation (FAME), a novel optimization technique that leverages the power of Triple Exponential Moving Average. By incorporating an advanced tracking mechanism, FAME enhances responsiveness to data dynamics, mitigates trend identification lag, and optimizes learning efficiency. Our comprehensive evaluation encompasses different computer vision tasks including image classification, object detection, and semantic segmentation, integrating FAME into 30 distinct architectures ranging from lightweight CNNs to Vision Transformers. Through rigorous benchmarking against state-of-the-art optimizers, FAME demonstrates superior accuracy and robustness. Notably, it offers high scalability, delivering substantial improvements across diverse model complexities, architectures, tasks, and benchmarks.
- Abstract(参考訳): ディープラーニングモデルの性能は高度な最適化戦略に依存している。
既存のオプティマイザは有望な結果を示しているが、多くは1次指数移動平均(EMA)技術に依存しており、複雑な勾配傾向を正確に追跡する能力を制限している。
この事実は、特に非常にダイナミックな勾配の挙動において、トレンドの識別と最適下最適化に著しい遅延をもたらす可能性がある。
この基本的限界に対処するために,三重指数移動平均のパワーを利用する新しい最適化手法であるFAME(Fast Adaptive Moment Estimation)を導入する。
高度なトラッキング機構を導入することで、FAMEはデータダイナミクスへの応答性を高め、トレンド識別ラグを緩和し、学習効率を最適化する。
包括的評価は、画像分類、オブジェクト検出、セマンティックセグメンテーションを含む様々なコンピュータビジョンタスクを含み、FAMEを軽量CNNからビジョントランスフォーマーまで30の異なるアーキテクチャに統合する。
最先端のオプティマイザに対する厳密なベンチマークを通じて、FAMEはより優れた精度と堅牢性を示す。
特に、高いスケーラビリティを提供し、さまざまなモデルの複雑さ、アーキテクチャ、タスク、ベンチマークにわたって大幅に改善されている。
関連論文リスト
- Architect Your Landscape Approach (AYLA) for Optimizations in Deep Learning [0.0]
グラディエントDescent(DSG)とその変種(ADAMなど)はディープラーニングの最適化の基礎となっている。
本稿では適応性と効率性を向上する新しい最適化手法であるAYLAを紹介する。
論文 参考訳(メタデータ) (2025-04-02T16:31:39Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC)は,限られたラベル付きサンプルを用いたリモートセンシング画像の分類の課題を示す。
理想的なプラトン表現空間を構築することを目的とした,OTAT(Optimal Transport Adapter Tuning)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-19T07:04:24Z) - Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
RMSの暗黙的な振る舞いは、微分方程式の「中央流:」によって明示的に捉えられることを示す。
これらのフローは、汎用ニューラルネットワークの長期最適化軌道を経験的に予測できることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:13Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Improving Instance Optimization in Deformable Image Registration with Gradient Projection [7.6061804149819885]
変形可能な画像登録は本質的に多目的最適化問題である。
これらの矛盾する目的は、しばしば最適化結果の貧弱につながる。
ディープラーニングの手法は、大規模なデータセット処理の効率化により、最近この領域で人気を博している。
論文 参考訳(メタデータ) (2024-10-21T08:27:13Z) - HGSLoc: 3DGS-based Heuristic Camera Pose Refinement [13.393035855468428]
視覚的ローカライゼーションは、既知のシーン表現内のカメラのポーズと方向を決定するプロセスを指す。
本稿では,3次元再構成と改良戦略を統合したHGSLocを提案する。
提案手法は,NeRFベースのニューラルレンダリング手法と比較して,高速なレンダリング速度とローカライズ精度を示す。
論文 参考訳(メタデータ) (2024-09-17T06:48:48Z) - Adaptive Friction in Deep Learning: Enhancing Optimizers with Sigmoid and Tanh Function [0.0]
我々は適応摩擦係数を統合する2つの新しい勾配であるsigSignGradとtanhSignGradを紹介する。
我々の理論解析は,摩擦係数Sの広帯域調整能力を示す。
ResNet50 と ViT アーキテクチャを用いた CIFAR-10, Mini-Image-Net 実験により,提案手法の優れた性能が確認された。
論文 参考訳(メタデータ) (2024-08-07T03:20:46Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - Variational Stochastic Gradient Descent for Deep Neural Networks [16.96187187108041]
現在の最先端は、Adamのような適応的勾配に基づく最適化手法である。
ここでは,2つのアプローチを組み合わせることを提案し,その結果,VSGD(Variational Gradient Descent)を導出する。
我々は、VSGD法がAdamのような他の適応勾配ベースとどのように関係しているかを示す。
論文 参考訳(メタデータ) (2024-04-09T18:02:01Z) - Online Adaptive Disparity Estimation for Dynamic Scenes in Structured
Light Systems [17.53719804060679]
このパフォーマンスギャップを埋める解決策として、自己監督型オンライン適応が提案されている。
本稿では,長い逐次入力に基づく教師なし損失関数を提案する。
提案手法は,オンライン適応速度を大幅に向上し,目に見えないデータに対して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-10-13T08:00:33Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
我々は,新しいtextscAdmeta(textbfADouble指数textbfMov averagtextbfE textbfAdaptiveおよび非適応運動量)フレームワークを提案する。
我々は、textscAdmetaR と textscAdmetaS の2つの実装を提供し、前者は RAdam を、後者は SGDM をベースとしています。
論文 参考訳(メタデータ) (2023-07-02T18:16:06Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - Improving Multi-fidelity Optimization with a Recurring Learning Rate for
Hyperparameter Tuning [7.591442522626255]
再帰学習率(MORL)を考慮した多相最適化を提案する。
MORLはCNNの最適化プロセスを多要素最適化に組み込んでいる。
スロースタートの問題を緩和し、より正確な低忠実度近似を実現する。
論文 参考訳(メタデータ) (2022-09-26T08:16:31Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - Transferable Graph Optimizers for ML Compilers [18.353830282858834]
計算グラフ最適化(GO)のためのエンドツーエンドで転送可能な深層強化学習法を提案する。
GOは個々のノードに対して自動回帰ではなく,グラフ全体の決定を生成する。
GOは、人間の専門家よりも21%改善し、先行技術よりも18%改善し、15倍早く収束する。
論文 参考訳(メタデータ) (2020-10-21T20:28:33Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。