論文の概要: Improving Instance Optimization in Deformable Image Registration with Gradient Projection
- arxiv url: http://arxiv.org/abs/2410.15767v2
- Date: Wed, 23 Oct 2024 07:55:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 09:54:53.253435
- Title: Improving Instance Optimization in Deformable Image Registration with Gradient Projection
- Title(参考訳): 勾配投影による変形可能な画像登録におけるインスタンス最適化の改善
- Authors: Yi Zhang, Yidong Zhao, Qian Tao,
- Abstract要約: 変形可能な画像登録は本質的に多目的最適化問題である。
これらの矛盾する目的は、しばしば最適化結果の貧弱につながる。
ディープラーニングの手法は、大規模なデータセット処理の効率化により、最近この領域で人気を博している。
- 参考スコア(独自算出の注目度): 7.6061804149819885
- License:
- Abstract: Deformable image registration is inherently a multi-objective optimization (MOO) problem, requiring a delicate balance between image similarity and deformation regularity. These conflicting objectives often lead to poor optimization outcomes, such as being trapped in unsatisfactory local minima or experiencing slow convergence. Deep learning methods have recently gained popularity in this domain due to their efficiency in processing large datasets and achieving high accuracy. However, they often underperform during test time compared to traditional optimization techniques, which further explore iterative, instance-specific gradient-based optimization. This performance gap is more pronounced when a distribution shift between training and test data exists. To address this issue, we focus on the instance optimization (IO) paradigm, which involves additional optimization for test-time instances based on a pre-trained model. IO effectively combines the generalization capabilities of deep learning with the fine-tuning advantages of instance-specific optimization. Within this framework, we emphasize the use of gradient projection to mitigate conflicting updates in MOO. This technique projects conflicting gradients into a common space, better aligning the dual objectives and enhancing optimization stability. We validate our method using a state-of-the-art foundation model on the 3D Brain inter-subject registration task (LUMIR) from the Learn2Reg 2024 Challenge. Our results show significant improvements over standard gradient descent, leading to more accurate and reliable registration results.
- Abstract(参考訳): 変形可能な画像登録は本質的に多目的最適化(MOO)問題であり、画像類似性と変形規則性の微妙なバランスを必要とする。
これらの対立する目的はしばしば、満足のいく局所的なミニマに閉じ込められたり、緩やかな収束を経験するなど、最適化結果の貧弱につながる。
ディープラーニング手法は、大規模なデータセットの処理と高精度化の効率化により、最近この領域で人気を集めている。
しかし、それらは従来の最適化手法と比較してテスト期間中に性能が劣ることが多く、インスタンス固有の勾配に基づく最適化を反復的に検討する。
このパフォーマンスギャップは、トレーニングとテストデータの分散シフトが存在する場合により顕著になる。
この問題に対処するために、私たちは、事前訓練されたモデルに基づいたテスト時間インスタンスのさらなる最適化を含む、インスタンス最適化(IO)パラダイムに注目します。
IOは、ディープラーニングの一般化能力と、インスタンス固有の最適化の微調整の利点を効果的に組み合わせている。
このフレームワーク内では、MOOの矛盾する更新を緩和するために勾配予測を用いることを強調します。
この手法は、勾配を共通空間に相反させ、双対目的の整合性を向上し、最適化安定性を向上する。
本稿では,Learner2Reg 2024 Challengeの3D Brain Inter-ject registration Task (LUMIR) における最先端基礎モデルを用いて,本手法の有効性を検証する。
その結果,標準勾配降下よりも顕著な改善が見られ,より正確で信頼性の高い登録結果が得られた。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Deep Implicit Optimization for Robust and Flexible Image Registration [20.34181966545357]
ディープネットワークの層として最適化を取り入れることで,古典的手法と学習的手法のギャップを埋める。
繰り返し最適化によるエンド・ツー・エンドの識別を暗黙的に行うことで、学習した特徴は登録とラベル認識である。
我々のフレームワークは、ドメイン内のデータセットで優れたパフォーマンスを示し、ドメインシフトに依存しない。
論文 参考訳(メタデータ) (2024-06-11T15:28:48Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
本研究では3次元ポーズ推定のための不確実性認識テスト時間最適化フレームワークを提案する。
我々のアプローチは、Human3.6Mの4.5%という大きなマージンで、過去最高の結果を上回っている。
論文 参考訳(メタデータ) (2024-02-04T04:28:02Z) - Gradient constrained sharpness-aware prompt learning for vision-language
models [99.74832984957025]
本稿では,視覚言語モデル(VLM)の一般化可能な即時学習における新たなトレードオフ問題を提案する。
最先端手法のロスランドスケープとSAMに基づくバニラシャープネス認識最小化法を解析することにより、トレードオフ性能は損失値と損失シャープネスの両方に相関していると結論付けた。
本稿では,GCSCoOp (Gradient Constrained Sharpness-Aware Context Optimization) と表記される,素早い学習のためのSAMベースの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-09-14T17:13:54Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
本稿では,下降の動的過程を利用した新しいスワム・スワムベースのフレームワークを提案する。
このアプローチの最大の利点は、降下を決定する前に現在の状態についてより深い探索を行うことである。
論文 参考訳(メタデータ) (2022-11-26T09:06:15Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
随伴型最適化法は空気力学的形状設計において魅力的である。
複数の最適化問題が解決されている場合、それらは違法に高価になる可能性がある。
本稿では,高コストな随伴解法に取って代わる機械学習を実現するサロゲートベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-15T15:09:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。