PolyDiffuse: Polygonal Shape Reconstruction via Guided Set Diffusion
Models
- URL: http://arxiv.org/abs/2306.01461v2
- Date: Mon, 25 Dec 2023 03:55:07 GMT
- Title: PolyDiffuse: Polygonal Shape Reconstruction via Guided Set Diffusion
Models
- Authors: Jiacheng Chen, Ruizhi Deng, Yasutaka Furukawa
- Abstract summary: PolyDiffuse is a novel structured reconstruction algorithm that transforms visual sensor data into polygonal shapes with Diffusion Models (DM)
DM is an emerging machinery amid exploding generative AI, while formulating reconstruction as a generation process conditioned on sensor data.
We have evaluated our approach for reconstructing two types of polygonal shapes: floorplan as a set of polygons and HD map for autonomous cars as a set of polylines.
- Score: 26.819929072916363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents PolyDiffuse, a novel structured reconstruction algorithm
that transforms visual sensor data into polygonal shapes with Diffusion Models
(DM), an emerging machinery amid exploding generative AI, while formulating
reconstruction as a generation process conditioned on sensor data. The task of
structured reconstruction poses two fundamental challenges to DM: 1) A
structured geometry is a ``set'' (e.g., a set of polygons for a floorplan
geometry), where a sample of $N$ elements has $N!$ different but equivalent
representations, making the denoising highly ambiguous; and 2) A
``reconstruction'' task has a single solution, where an initial noise needs to
be chosen carefully, while any initial noise works for a generation task. Our
technical contribution is the introduction of a Guided Set Diffusion Model
where 1) the forward diffusion process learns guidance networks to control
noise injection so that one representation of a sample remains distinct from
its other permutation variants, thus resolving denoising ambiguity; and 2) the
reverse denoising process reconstructs polygonal shapes, initialized and
directed by the guidance networks, as a conditional generation process subject
to the sensor data. We have evaluated our approach for reconstructing two types
of polygonal shapes: floorplan as a set of polygons and HD map for autonomous
cars as a set of polylines. Through extensive experiments on standard
benchmarks, we demonstrate that PolyDiffuse significantly advances the current
state of the art and enables broader practical applications.
Related papers
- P2PFormer: A Primitive-to-polygon Method for Regular Building Contour Extraction from Remote Sensing Images [5.589842901102337]
Existing methods struggle with irregular contours, rounded corners, and redundancy points.
We introduce a novel, streamlined pipeline that generates regular building contours without post-processing.
P2PFormer achieves new state-of-the-art performance on the WHU, CrowdAI, and WHU-Mix datasets.
arXiv Detail & Related papers (2024-06-05T04:38:45Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh denoising is aimed at removing noise from input meshes while preserving their feature structures.
SurfaceFormer is a pioneering Transformer-based mesh denoising framework.
New representation known as Local Surface Descriptor captures local geometric intricacies.
Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation.
arXiv Detail & Related papers (2024-05-10T15:27:43Z) - PolyDiff: Generating 3D Polygonal Meshes with Diffusion Models [15.846449180313778]
PolyDiff is the first diffusion-based approach capable of directly generating realistic and diverse 3D polygonal meshes.
Our model is capable of producing high-quality 3D polygonal meshes, ready for integration into downstream 3D.
arXiv Detail & Related papers (2023-12-18T18:19:26Z) - NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
We present a novel method for 3D surface reconstruction from multiple images where only a part of the object of interest is captured.
Our approach builds on two recent developments: surface reconstruction using neural radiance fields for the reconstruction of the visible parts of the surface, and guidance of pre-trained 2D diffusion models in the form of Score Distillation Sampling (SDS) to complete the shape in unobserved regions in a plausible manner.
arXiv Detail & Related papers (2023-12-07T19:30:55Z) - HiT: Building Mapping with Hierarchical Transformers [43.31497052507252]
We propose a simple and novel building mapping method with Hierarchical Transformers, called HiT.
HiT builds on a two-stage detection architecture by adding a polygon head parallel to classification and bounding box regression heads.
Our method achieves a new state-of-the-art in terms of instance segmentation and polygonal metrics compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-18T10:24:25Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces.
We propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning.
The model can be scaled to generate high-resolution data while unifying multiple modalities.
arXiv Detail & Related papers (2023-05-24T03:32:03Z) - Recurrent Generic Contour-based Instance Segmentation with Progressive
Learning [111.31166268300817]
We propose a novel deep network architecture, i.e., PolySnake, for generic contour-based instance segmentation.
Motivated by the classic Snake algorithm, the proposed PolySnake achieves superior and robust segmentation performance.
arXiv Detail & Related papers (2023-01-21T05:34:29Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
This paper introduces a novel framework called DTNet for 3D mesh reconstruction and generation via Disentangled Topology.
Our method is able to produce high-quality meshes, particularly with diverse topologies, as compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-06-10T08:32:57Z) - AutoPoly: Predicting a Polygonal Mesh Construction Sequence from a
Silhouette Image [17.915067368873018]
AutoPoly is a hybrid method that generates a polygonal mesh construction sequence from a silhouette image.
Our method can alter topology, whereas the recently proposed inverse shape estimation methods using differentiable rendering can only handle a fixed topology.
arXiv Detail & Related papers (2022-03-29T04:48:47Z) - Automated LoD-2 Model Reconstruction from Very-HighResolution
Satellite-derived Digital Surface Model and Orthophoto [1.2691047660244335]
We propose a model-driven method that reconstructs LoD-2 building models following a "decomposition-optimization-fitting" paradigm.
Our proposed method has addressed a few technical caveats over existing methods, resulting in practically high-quality results.
arXiv Detail & Related papers (2021-09-08T19:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.