Interaction-induced transition in quantum many-body detection probability
- URL: http://arxiv.org/abs/2306.01586v3
- Date: Wed, 20 Mar 2024 21:03:30 GMT
- Title: Interaction-induced transition in quantum many-body detection probability
- Authors: Archak Purkayastha, Alberto Imparato,
- Abstract summary: We introduce the concept of quantum many-body detection probability (QMBDP), which refers to the probability of detecting a chosen signal at least once in a given time.
We show that, on tuning some Hamiltonian parameters, there can be sharp transition from a regime where QMBDP $approx 1$, to a regime, where QMBDP $approx 0$.
This is not a measurement-induced transition, but rather a non-equilibrium transition reflecting opening of a specific type of gap in the many-body spectrum.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of digital and analog quantum simulation experiments, it is now possible to experimentally simulate dynamics of quantum many-body lattice systems and make site-resolved measurements. These experiments make it pertinent to consider the probability of getting any specific measurement outcome, which we call the `signal', on placing multiple detectors at various sites while simulating dynamics of a quantum many-body lattice system. In this work, we formulate and investigate this problem, introducing the concept of quantum many-body detection probability (QMBDP), which refers to the probability of detecting a chosen signal at least once in a given time. We show that, on tuning some Hamiltonian parameters, there can be sharp transition from a regime where QMBDP $\approx 1$, to a regime, where QMBDP $\approx 0$. Most notably, the effects of such a transition can be observed at a single trajectory level. This is not a measurement-induced transition, but rather a non-equilibrium transition reflecting opening of a specific type of gap in the many-body spectrum. We demonstrate this in a single-impurity non-integrable model, where changing the many-body interaction strength brings about such a transition. Our findings suggest that instead of measuring expectation values, single-shot stroboscopic measurements could be used to observe non-equilibrium transitions.
Related papers
- Observable Measurement-Induced Transitions [0.027042267806481293]
We report the discovery of another measurement-induced phase transition that can be observed experimentally if quantum dynamics can be reversed.
On one side of the transition the quantum information encoded in some part of the Hilbert space is fully recovered after the time inversion.
On the other side, all quantum information is corrupted.
arXiv Detail & Related papers (2024-10-12T03:38:22Z) - Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Inferring interpretable dynamical generators of local quantum
observables from projective measurements through machine learning [17.27816885271914]
We utilize a machine-learning approach to infer the dynamical generator governing the evolution of local observables in a many-body system from noisy data.
Our method is not only useful for extracting effective dynamical generators from many-body systems, but may also be applied for inferring decoherence mechanisms of quantum simulation and computing platforms.
arXiv Detail & Related papers (2023-06-06T18:01:18Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Observation of entanglement negativity transition of pseudo-random mixed
states [23.43987389179338]
Multipartite entanglement is a key resource for quantum computation.
Here, we report the observation of entanglement transition quantified by negativity using a fully connected 20-qubit superconducting processor.
Our simulator provides a powerful tool to generate random states and understand the entanglement structure for multipartite quantum systems.
arXiv Detail & Related papers (2022-08-29T02:56:05Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - Variational Simulation of Schwinger's Hamiltonian with Polarisation
Qubits [0.0]
We study the effect of noise on the quantum phase transition in the Schwinger model.
Experiments are built using a free space optical scheme to realize a pair of polarization qubits.
We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system.
arXiv Detail & Related papers (2020-09-21T00:39:01Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.