Reduction of finite sampling noise in quantum neural networks
- URL: http://arxiv.org/abs/2306.01639v3
- Date: Fri, 21 Jun 2024 08:08:06 GMT
- Title: Reduction of finite sampling noise in quantum neural networks
- Authors: David A. Kreplin, Marco Roth,
- Abstract summary: We introduce the variance regularization, a technique for reducing the variance of the expectation value during the quantum model training.
This technique requires no additional circuit evaluations if the QNN is properly constructed.
We show that in our examples, it lowers the variance by an order of magnitude on average and leads to a significantly reduced noise level of the QNN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum neural networks (QNNs) use parameterized quantum circuits with data-dependent inputs and generate outputs through the evaluation of expectation values. Calculating these expectation values necessitates repeated circuit evaluations, thus introducing fundamental finite-sampling noise even on error-free quantum computers. We reduce this noise by introducing the variance regularization, a technique for reducing the variance of the expectation value during the quantum model training. This technique requires no additional circuit evaluations if the QNN is properly constructed. Our empirical findings demonstrate the reduced variance speeds up the training and lowers the output noise as well as decreases the number of necessary evaluations of gradient circuits. This regularization method is benchmarked on the regression of multiple functions and the potential energy surface of water. We show that in our examples, it lowers the variance by an order of magnitude on average and leads to a significantly reduced noise level of the QNN. We finally demonstrate QNN training on a real quantum device and evaluate the impact of error mitigation. Here, the optimization is feasible only due to the reduced number of necessary shots in the gradient evaluation resulting from the reduced variance.
Related papers
- Calibration of Quantum Devices via Robust Statistical Methods [45.464983015777314]
We numerically analyze advanced statistical methods for Bayesian inference against the state-of-the-art in quantum parameter learning.<n>We show advantages of these approaches over existing ones, namely under multi-modality and high dimensionality.<n>Our findings have applications in challenging quantumcharacterization tasks namely learning the dynamics of open quantum systems.
arXiv Detail & Related papers (2025-07-09T15:22:17Z) - Prospects of Quantum Error Mitigation for Quantum Signal Processing [0.0]
This work explores the performance of zero-noise-extrapolation (ZNE) on a Hamiltonian simulation algorithm designed within quantum signal processing (QSP)<n>We quantify for which noise and depth regimes our ZNE protocol can recover an approximation of the noiseless expectation value.<n>We briefly discuss and present a numerical study on the region where ZNE is unusable, even given an unlimited sample budget.
arXiv Detail & Related papers (2025-05-08T19:49:54Z) - Noise-Robust Estimation of Quantum Observables in Noisy Hardware [0.0]
Noise-Robust Estimation is a noise-agnostic framework that systematically reduces estimation bias.
NRE exploits a bias-dispersion correlation uncovered in this work.
We experimentally validate NRE on an IQM superconducting quantum processor.
arXiv Detail & Related papers (2025-03-09T17:18:16Z) - Designing strong baselines for ternary neural network quantization
through support and mass equalization [7.971065005161565]
Deep neural networks (DNNs) offer the highest performance in a wide range of applications in computer vision.
This computational burden can be dramatically reduced by quantizing floating point values to ternary values.
We show experimentally that our approach allows to significantly improve the performance of ternary quantization through a variety of scenarios.
arXiv Detail & Related papers (2023-06-30T07:35:07Z) - Classical simulations of noisy variational quantum circuits [0.0]
Noisely affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up.
We construct a classical simulation algorithm, LOWESA, for estimating expectation values of noisy parameterised quantum circuits.
arXiv Detail & Related papers (2023-06-08T17:52:30Z) - Error-aware Quantization through Noise Tempering [43.049102196902844]
Quantization-aware training (QAT) optimize model parameters with respect to the end task while simulating quantization error.
In this work, we incorporate exponentially decaying quantization-error-aware noise together with a learnable scale of task loss gradient to approximate the effect of a quantization operator.
Our method obtains state-of-the-art top-1 classification accuracy for uniform (non mixed-precision) quantization, out-performing previous methods by 0.5-1.2% absolute.
arXiv Detail & Related papers (2022-12-11T20:37:50Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms.
We consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error.
We show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates.
arXiv Detail & Related papers (2022-01-20T00:05:01Z) - Toward Trainability of Deep Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) with random structures have poor trainability due to the exponentially vanishing gradient as the circuit depth and the qubit number increase.
We provide the first viable solution to the vanishing gradient problem for deep QNNs with theoretical guarantees.
arXiv Detail & Related papers (2021-12-30T10:27:08Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - Robust quantum classifier with minimal overhead [0.8057006406834467]
Several quantum algorithms for binary classification based on the kernel method have been proposed.
These algorithms rely on estimating an expectation value, which in turn requires an expensive quantum data encoding procedure to be repeated many times.
We show that the kernel-based binary classification can be performed with a single-qubit measurement regardless of the number and the dimension of the data.
arXiv Detail & Related papers (2021-04-16T14:51:00Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
This paper proposes two novel techniques to train deep convolutional neural networks with low bit-width weights and activations.
First, to obtain low bit-width weights, most existing methods obtain the quantized weights by performing quantization on the full-precision network weights.
Second, to obtain low bit-width activations, existing works consider all channels equally.
arXiv Detail & Related papers (2020-12-26T15:21:18Z) - Error mitigation via verified phase estimation [0.25295633594332334]
This paper presents a new error mitigation technique based on quantum phase estimation.
We show that it can be adapted to function without the use of control qubits.
arXiv Detail & Related papers (2020-10-06T07:44:10Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.