Insights into Closed-form IPM-GAN Discriminator Guidance for Diffusion Modeling
- URL: http://arxiv.org/abs/2306.01654v2
- Date: Thu, 31 Jul 2025 06:38:19 GMT
- Title: Insights into Closed-form IPM-GAN Discriminator Guidance for Diffusion Modeling
- Authors: Aadithya Srikanth, Siddarth Asokan, Nishanth Shetty, Chandra Sekhar Seelamantula,
- Abstract summary: We propose a theoretical framework to analyze the effect of the GAN discriminator on Langevin-based sampling.<n>We show that the proposed approach can be combined with existing accelerated-diffusion techniques to improve latent-space image generation.
- Score: 11.68361062474064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are a state-of-the-art generative modeling framework that transform noise to images via Langevin sampling, guided by the score, which is the gradient of the logarithm of the data distribution. Recent works have shown empirically that the generation quality can be improved when guided by classifier network, which is typically the discriminator trained in a generative adversarial network (GAN) setting. In this paper, we propose a theoretical framework to analyze the effect of the GAN discriminator on Langevin-based sampling, and show that the IPM-GAN optimization can be seen as one of smoothed score-matching, wherein the scores of the data and the generator distributions are convolved with the kernel function associated with the IPM. The proposed approach serves to unify score-based training and optimization of IPM-GANs. Based on these insights, we demonstrate that closed-form kernel-based discriminator guidance, results in improvements (in terms of CLIP-FID and KID metrics) when applied atop baseline diffusion models. We demonstrate these results on the denoising diffusion implicit model (DDIM) and latent diffusion model (LDM) settings on various standard datasets. We also show that the proposed approach can be combined with existing accelerated-diffusion techniques to improve latent-space image generation.
Related papers
- ReDiSC: A Reparameterized Masked Diffusion Model for Scalable Node Classification with Structured Predictions [64.17845687013434]
We propose ReDiSC, a structured diffusion model for structured node classification.<n>We show that ReDiSC achieves superior or highly competitive performance compared to state-of-the-art GNN, label propagation, and diffusion-based baselines.<n> Notably, ReDiSC scales effectively to large-scale datasets on which previous structured diffusion methods fail due to computational constraints.
arXiv Detail & Related papers (2025-07-19T04:46:53Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks [79.50756148780928]
This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks.<n>We extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model.
arXiv Detail & Related papers (2025-04-24T05:13:27Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - A Score-Based Density Formula, with Applications in Diffusion Generative Models [6.76974373198208]
Score-based generative models (SGMs) have revolutionized the field of generative modeling, achieving unprecedented success in generating realistic and diverse content.
Despite empirical advances, the theoretical basis for why optimizing the evidence lower bound (ELBO) on the log-likelihood is effective for training diffusion generative models, such as DDPMs, remains largely unexplored.
arXiv Detail & Related papers (2024-08-29T17:59:07Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Adversarial Training of Denoising Diffusion Model Using Dual
Discriminators for High-Fidelity Multi-Speaker TTS [0.0]
The diffusion model is capable of generating high-quality data through a probabilistic approach.
It suffers from the drawback of slow generation speed due to the requirement of a large number of time steps.
We propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data.
arXiv Detail & Related papers (2023-08-03T07:22:04Z) - Adversarial Likelihood Estimation With One-Way Flows [44.684952377918904]
Generative Adversarial Networks (GANs) can produce high-quality samples, but do not provide an estimate of the probability density around the samples.
We show that our method converges faster, produces comparable sample quality to GANs with similar architecture, successfully avoids over-fitting to commonly used datasets and produces smooth low-dimensional latent representations of the training data.
arXiv Detail & Related papers (2023-07-19T10:26:29Z) - DiffFlow: A Unified SDE Framework for Score-Based Diffusion Models and
Generative Adversarial Networks [41.451880167535776]
We propose a unified theoretic framework for explicit generative models (SDMs) and generative adversarial nets (GANs)
Under our unified theoretic framework, we introduce several instantiations of the DiffFLow that provide new algorithms beyond GANs and SDMs with exact likelihood inference.
arXiv Detail & Related papers (2023-07-05T10:00:53Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - The Score-Difference Flow for Implicit Generative Modeling [1.1929584800629673]
Implicit generative modeling aims to produce samples of synthetic data matching a target data distribution.
Recent work has approached the IGM problem from the perspective of pushing synthetic source data toward the target distribution.
We present the score difference between arbitrary target and source distributions as a flow that optimally reduces the Kullback-Leibler divergence between them.
arXiv Detail & Related papers (2023-04-25T15:21:12Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - cGANs with Auxiliary Discriminative Classifier [43.78253518292111]
Conditional generative models aim to learn the underlying joint distribution of data and labels.
auxiliary classifier generative adversarial networks (AC-GAN) have been widely used, but suffer from the issue of low intra-class diversity on generated samples.
We propose novel cGANs with auxiliary discriminative classifier (ADC-GAN) to address the issue of AC-GAN.
arXiv Detail & Related papers (2021-07-21T13:06:32Z) - Mode Penalty Generative Adversarial Network with adapted Auto-encoder [0.15229257192293197]
We propose a mode penalty GAN combined with pre-trained auto encoder for explicit representation of generated and real data samples in encoded space.
We demonstrate that applying the proposed method to GANs helps generator's optimization becoming more stable and having faster convergence through experimental evaluations.
arXiv Detail & Related papers (2020-11-16T03:39:53Z) - Sampling-Decomposable Generative Adversarial Recommender [84.05894139540048]
We propose a Sampling-Decomposable Generative Adversarial Recommender (SD-GAR)
In the framework, the divergence between some generator and the optimum is compensated by self-normalized importance sampling.
We extensively evaluate the proposed algorithm with five real-world recommendation datasets.
arXiv Detail & Related papers (2020-11-02T13:19:10Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution.
In practice, semantic information might be represented by some latent distribution learned from data.
We propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data.
arXiv Detail & Related papers (2020-07-28T09:17:50Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
Several sampling algorithms with variance reduction have been proposed for accelerating the training of Graph Convolution Networks (GCNs)
These sampling algorithms are not applicable to more general graph neural networks (GNNs) where the message aggregator contains learned weights rather than fixed weights, such as Graph Attention Networks (GAT)
arXiv Detail & Related papers (2020-06-10T12:48:37Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
arXiv Detail & Related papers (2020-04-05T01:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.