論文の概要: From Zero to Turbulence: Generative Modeling for 3D Flow Simulation
- arxiv url: http://arxiv.org/abs/2306.01776v3
- Date: Thu, 14 Mar 2024 22:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 07:42:00.915240
- Title: From Zero to Turbulence: Generative Modeling for 3D Flow Simulation
- Title(参考訳): ゼロから乱流へ:3次元流れシミュレーションのための生成モデル
- Authors: Marten Lienen, David Lüdke, Jan Hansen-Palmus, Stephan Günnemann,
- Abstract要約: 本稿では, 乱流シミュレーションを, 初期流れの状態に依存することなく, 可能な全ての乱流状態の多様体を直接学習する生成タスクとして提案する。
生成モデルでは、未知の物体による乱流の分布を捉え、下流アプリケーションのための高品質で現実的なサンプルを生成する。
- 参考スコア(独自算出の注目度): 45.626346087828765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulations of turbulent flows in 3D are one of the most expensive simulations in computational fluid dynamics (CFD). Many works have been written on surrogate models to replace numerical solvers for fluid flows with faster, learned, autoregressive models. However, the intricacies of turbulence in three dimensions necessitate training these models with very small time steps, while generating realistic flow states requires either long roll-outs with many steps and significant error accumulation or starting from a known, realistic flow state - something we aimed to avoid in the first place. Instead, we propose to approach turbulent flow simulation as a generative task directly learning the manifold of all possible turbulent flow states without relying on any initial flow state. For our experiments, we introduce a challenging 3D turbulence dataset of high-resolution flows and detailed vortex structures caused by various objects and derive two novel sample evaluation metrics for turbulent flows. On this dataset, we show that our generative model captures the distribution of turbulent flows caused by unseen objects and generates high-quality, realistic samples amenable for downstream applications without access to any initial state.
- Abstract(参考訳): 3Dにおける乱流のシミュレーションは計算流体力学(CFD)において最も高価なシミュレーションの1つである。
流体の数値解法を高速で学習された自己回帰モデルに置き換えるために、サロゲートモデルに関する多くの研究が書かれてきた。
しかし、3次元での乱流の複雑さは、これらのモデルを非常に小さな時間ステップでトレーニングする必要がある一方で、現実的なフロー状態を生成するには、多くのステップで長いロールアウトが必要になる。
その代わり, 乱流シミュレーションを, 初期流れの状態に頼らずに, 可能な全ての乱流状態の多様体を直接学習する生成タスクとして提案する。
本実験では,高分解能流れの3次元乱流データセットと各種物体による渦構造の詳細な解析を行い,乱流に対する2つの新しいサンプル評価指標を導出する。
本データセットでは, 生成モデルを用いて, 未確認物体による乱流の分布を把握し, 初期状態にアクセスせずに下流アプリケーションに適用可能な, 高品質で現実的なサンプルを生成する。
関連論文リスト
- Comparison of Generative Learning Methods for Turbulence Modeling [1.2499537119440245]
直接数値シミュレーション (DNS) や大渦シミュレーション (LES) のような高解像度の手法は一般に計算に手頃な価格ではない。
機械学習、特に生成確率モデルにおける最近の進歩は、乱流モデリングのための有望な代替手段を提供する。
本稿では, 変分オートエンコーダ(VAE), ディープ・コンバーサナル・ジェネレータ・ネットワーク(DCGAN), 拡散確率モデル(DDPM)の3つの生成モデルの適用について検討する。
論文 参考訳(メタデータ) (2024-11-25T14:20:53Z) - FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner [70.90505084288057]
フローベースモデルはサンプリングプロセス中により直線的なサンプリング軌道を生成する傾向にある。
擬似修正器やサンプル認識コンパイルなどいくつかの手法を導入し,推論時間をさらに短縮する。
FlowTurboはImageNet上で100(ms/img)で2.12FID、38(ms/img)で3.93FIDに達する
論文 参考訳(メタデータ) (2024-09-26T17:59:51Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
本研究では,4次元生成拡散モデルと物理インフォームドガイダンスを導入し,現実的な流れ状態列の生成を可能にする。
提案手法は, 乱流多様体からのサブシーケンス全体のサンプリングに有効であることが示唆された。
この進展は、乱流の時間的進化を分析するために生成モデリングを適用するための扉を開く。
論文 参考訳(メタデータ) (2024-06-17T10:21:01Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Convolutional autoencoder for the spatiotemporal latent representation
of turbulence [5.8010446129208155]
乱流の潜在表現を得るために3次元多次元畳み込みオートエンコーダ(CAE)を用いる。
マルチスケールCAEは効率が良く、データを圧縮するための適切な分解よりも10%以下の自由度を必要とする。
提案したディープラーニングアーキテクチャは、データからの乱流の非線形低次モデリングの機会を開放する。
論文 参考訳(メタデータ) (2023-01-31T16:06:54Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
物理制約付き深層学習モデルを構築し, 多相多孔質体における多相流の解法について検討した。
モデルは物理に基づくシミュレーションデータから訓練され、物理過程をエミュレートする。
このモデルは物理シミュレーションと比較して1400倍のスピードアップで予測を行う。
論文 参考訳(メタデータ) (2021-04-30T02:15:01Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。