Estimating Eigenenergies from Quantum Dynamics: A Unified
Noise-Resilient Measurement-Driven Approach
- URL: http://arxiv.org/abs/2306.01858v3
- Date: Thu, 23 Nov 2023 02:31:54 GMT
- Title: Estimating Eigenenergies from Quantum Dynamics: A Unified
Noise-Resilient Measurement-Driven Approach
- Authors: Yizhi Shen, Daan Camps, Aaron Szasz, Siva Darbha, Katherine Klymko,
David B. Williams--Young, Norm M. Tubman, Roel Van Beeumen
- Abstract summary: Ground state energy estimation is one of the most promising applications of quantum computing.
We introduce a new hybrid approach that finds the eigenenergies by collecting real-time measurements and post-processing them.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ground state energy estimation in physical, chemical, and materials sciences
is one of the most promising applications of quantum computing. In this work,
we introduce a new hybrid approach that finds the eigenenergies by collecting
real-time measurements and post-processing them using the machinery of dynamic
mode decomposition (DMD). From the perspective of quantum dynamics, we
establish that our approach can be formally understood as a stable variational
method on the function space of observables available from a quantum many-body
system. We also provide strong theoretical and numerical evidence that our
method converges rapidly even in the presence of a large degree of perturbative
noise, and show that the method bears an isomorphism to robust matrix
factorization methods developed independently across various scientific
communities. Our numerical benchmarks on spin and molecular systems demonstrate
an accelerated convergence and a favorable resource reduction over
state-of-the-art algorithms. The DMD-centric strategy can systematically
mitigate noise and stands out as a leading hybrid quantum-classical
eigensolver.
Related papers
- Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
arXiv Detail & Related papers (2024-03-13T13:27:40Z) - Machine Learning Assisted Cognitive Construction of a Shallow Depth
Dynamic Ansatz for Noisy Quantum Hardware [0.0]
We develop a novel protocol that capitalizes on regenerative machine learning methodologies and many-body theoretic measures to construct a highly expressive and shallow ansatz.
The proposed method is highly compatible with state-of-the-art neural error mitigation techniques.
arXiv Detail & Related papers (2023-10-12T16:27:53Z) - Continuous-variable quantum optics and resource theory for ultrafast
semiconductor spectroscopy [0.0]
We focus on multichannel homodyne detection as a powerful tool to measure the quantum coherence and the full density matrix of a polariton system.
By monitoring the temporal decay of quantum coherence in the polariton condensate, we observe coherence times exceeding the nanosecond scale.
The combination of tailored resource quantifiers and ultrafast spectroscopy techniques presented here paves the way for future applications of quantum information technologies.
arXiv Detail & Related papers (2023-06-02T13:56:47Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Incoherent quantum algorithm dynamics of an open system with near-term
devices [0.0]
Hybrid quantum-classical algorithms are among the most promising systems to implement quantum computing.
We investigate a quantum dynamics algorithm for the density matrix obeying the von Neumann equation.
We consider the dynamics of the ensemble-averaged of disordered quantum systems.
arXiv Detail & Related papers (2020-08-12T14:22:42Z) - Non-adiabatic molecular quantum dynamics with quantum computers [0.0]
We propose a quantum algorithm for the simulation of fast non-adiabatic chemical processes.
In particular, we introduce a first-quantization method for the potential time evolution of a wavepacket on two harmonic energy surfaces.
arXiv Detail & Related papers (2020-06-16T18:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.