論文の概要: Hierarchical Quadratic Random Forest Classifier
- arxiv url: http://arxiv.org/abs/2306.01893v1
- Date: Fri, 2 Jun 2023 19:58:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 23:21:18.271540
- Title: Hierarchical Quadratic Random Forest Classifier
- Title(参考訳): 階層型二次ランダム森林分類器
- Authors: Faezeh Fallah
- Abstract要約: この森林は各決定ノードにペナル化多変量線形判別剤を組み込み、元の特徴空間における二次的決定境界を実現するために2乗特徴を処理した。
この森林によって推定される分類確率とその決定ノードによって学習された特徴は、スタンドアローンまたはグラフベースの分類器で利用することができる。
- 参考スコア(独自算出の注目度): 3.1219977244201056
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we proposed a hierarchical quadratic random forest classifier
for classifying multiresolution samples extracted from multichannel data. This
forest incorporated a penalized multivariate linear discriminant in each of its
decision nodes and processed squared features to realize quadratic decision
boundaries in the original feature space. The penalized discriminant was based
on a multiclass sparse discriminant analysis and the penalization was based on
a group Lasso regularizer which was an intermediate between the Lasso and the
ridge regularizer. The classification probabilities estimated by this forest
and the features learned by its decision nodes could be used standalone or
foster graph-based classifiers.
- Abstract(参考訳): 本稿では,マルチチャネルデータから抽出したマルチレゾリューションサンプルを分類するための階層型二次ランダムフォレスト分類器を提案する。
この森林は各決定ノードにペナル化多変量線形判別剤を組み込み、元の特徴空間における二次的決定境界を実現するために2乗特徴を処理した。
ペナリミナントはマルチクラスのスパース判別分析に基づいており, ペナリミナントはラッソ正規化器とリッジ正規化器の中間であるグループラッソ正規化器に基づいていた。
この森林によって推定される分類確率とその決定ノードによって学習された特徴は、スタンドアローンまたはグラフベースの分類器で利用することができる。
関連論文リスト
- FEMDA: a unified framework for discriminant analysis [4.6040036610482655]
非ガウスデータセットを扱うための新しいアプローチを提案する。
考慮されているモデルは、任意のスケールパラメータを持つクラスタ毎の任意の対称性(ES)分布である。
新しい決定規則を導出することにより,最大値のパラメータ推定と分類が,最先端手法と比較してシンプルで効率的で堅牢であることを示す。
論文 参考訳(メタデータ) (2023-11-13T17:59:37Z) - Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
そこで本研究では,クラスレベルのアライメントアライメントを有するバイディミネータドメイン対向ニューラルネットワークを提案する。
BACGは、領域分布の整合性を改善するために勾配信号と二階確率推定を利用する。
さらに、対照的な学習にインスパイアされ、トレーニングプロセスを大幅に短縮できるメモリバンクベースの変種であるFast-BACGを開発した。
論文 参考訳(メタデータ) (2023-10-21T09:53:17Z) - Selective inference using randomized group lasso estimators for general models [3.4034453928075865]
この手法は指数関数的な家族分布の使用、および過分散カウントデータに対する準様モデリングを含む。
ランダム化群正規化最適化問題について検討した。
選択されたモデルにおける回帰パラメータの信頼領域は、ウォルド型領域の形式をとり、境界体積を持つことを示す。
論文 参考訳(メタデータ) (2023-06-24T01:14:26Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Generalization Error Bounds for Multiclass Sparse Linear Classifiers [7.360807642941714]
スパース多項ロジスティック回帰による高次元多クラス分類を考察する。
本稿では,ペナル化最大可能性に基づく計算可能な特徴選択手法を提案する。
特に、グローバル・スパシティ、ダブル・行ワイド・スパシティ、ロー・ランク・スパシティについて検討する。
論文 参考訳(メタデータ) (2022-04-13T09:25:03Z) - Soft-margin classification of object manifolds [0.0]
単一対象の複数の出現に対応する神経集団は、神経応答空間における多様体を定義する。
そのような多様体を分類する能力は、オブジェクト認識やその他の計算タスクは多様体内の変数に無関心な応答を必要とするため、興味がある。
ソフトマージン分類器は、より大きなアルゴリズムのクラスであり、トレーニングセット外のパフォーマンスを最適化するためにアプリケーションで使われる追加の正規化パラメータを提供する。
論文 参考訳(メタデータ) (2022-03-14T12:23:36Z) - Minimax Rates for High-Dimensional Random Tessellation Forests [0.0]
モンドリアン林は、任意の次元でミニマックスレートが得られた最初のランダム林である。
概略分割方向を持つ多種多様なランダム林は任意の次元における最小収束率も達成できることを示す。
論文 参考訳(メタデータ) (2021-09-22T06:47:38Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
複数ラベルの分類課題を解決するために,LDA(Linear Discriminant Analysis)の新たな変種を提案する。
提案手法は,個々の試料の重量を定義する確率モデルに基づく。
サリエンシに基づく重み付きマルチラベル LDA アプローチは,様々なマルチラベル分類問題の性能改善につながることが示されている。
論文 参考訳(メタデータ) (2020-04-08T19:40:53Z) - A General Method for Robust Learning from Batches [56.59844655107251]
本稿では,バッチから頑健な学習を行う一般的なフレームワークについて考察し,連続ドメインを含む任意の領域に対する分類と分布推定の限界について考察する。
本手法は,一括分節分類,一括分節,単調,対数凹,ガウス混合分布推定のための,最初の頑健な計算効率の学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-25T18:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。