Reliable edge machine learning hardware for scientific applications
- URL: http://arxiv.org/abs/2406.19522v1
- Date: Thu, 27 Jun 2024 20:45:08 GMT
- Title: Reliable edge machine learning hardware for scientific applications
- Authors: Tommaso Baldi, Javier Campos, Ben Hawks, Jennifer Ngadiuba, Nhan Tran, Daniel Diaz, Javier Duarte, Ryan Kastner, Andres Meza, Melissa Quinnan, Olivia Weng, Caleb Geniesse, Amir Gholami, Michael W. Mahoney, Vladimir Loncar, Philip Harris, Joshua Agar, Shuyu Qin,
- Abstract summary: Extreme data rate scientific experiments create massive amounts of data that require efficient ML edge processing.
We discuss approaches to developing and validating reliable algorithms at the scientific edge under such strict latency, resource, power, and area requirements.
- Score: 34.87898436984149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extreme data rate scientific experiments create massive amounts of data that require efficient ML edge processing. This leads to unique validation challenges for VLSI implementations of ML algorithms: enabling bit-accurate functional simulations for performance validation in experimental software frameworks, verifying those ML models are robust under extreme quantization and pruning, and enabling ultra-fine-grained model inspection for efficient fault tolerance. We discuss approaches to developing and validating reliable algorithms at the scientific edge under such strict latency, resource, power, and area requirements in extreme experimental environments. We study metrics for developing robust algorithms, present preliminary results and mitigation strategies, and conclude with an outlook of these and future directions of research towards the longer-term goal of developing autonomous scientific experimentation methods for accelerated scientific discovery.
Related papers
- LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - PETScML: Second-order solvers for training regression problems in Scientific Machine Learning [0.22499166814992438]
In recent years, we have witnessed the emergence of scientific machine learning as a data-driven tool for the analysis.
We introduce a software built on top of the Portable and Extensible Toolkit for Scientific computation to bridge the gap between deep-learning software and conventional machine-learning techniques.
arXiv Detail & Related papers (2024-03-18T18:59:42Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
We present a new probabilistic machine learning framework called GFlowNets.
GFlowNets can be applied in the modeling, hypotheses generation and experimental design stages of the experimental science loop.
We argue that GFlowNets can become a valuable tool for AI-driven scientific discovery.
arXiv Detail & Related papers (2023-02-01T17:29:43Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Putting Density Functional Theory to the Test in
Machine-Learning-Accelerated Materials Discovery [2.7810723668216575]
We describe the advances needed in accuracy, efficiency, and approach beyond what is typical in conventional DFT-based machine learning (ML)
For DFT to be trusted for a given data point in a high- throughput screen, it must pass a series of tests.
For DFT to be trusted for a given data point in a high- throughput screen, it must pass a series of tests.
arXiv Detail & Related papers (2022-05-06T00:34:50Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions.
For more effective design and investigation, simulations require input from past experimental data to better predict future performance.
We describe a cognitive simulation method for combining simulation and experimental data into a common, predictive model.
arXiv Detail & Related papers (2021-03-19T02:00:14Z) - Towards the Development of Entropy-Based Anomaly Detection in an
Astrophysics Simulation [0.2867517731896504]
We present an anomaly problem which arises from a core-collapse supernovae simulation.
We discuss strategies and early successes in applying anomaly detection techniques to this scientific simulation.
arXiv Detail & Related papers (2020-09-05T01:43:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.