Generative Adversarial Networks for Data Augmentation
- URL: http://arxiv.org/abs/2306.02019v2
- Date: Wed, 7 Jun 2023 20:15:59 GMT
- Title: Generative Adversarial Networks for Data Augmentation
- Authors: Angona Biswas, MD Abdullah Al Nasim, Al Imran, Anika Tabassum Sejuty,
Fabliha Fairooz, Sai Puppala, Sajedul Talukder
- Abstract summary: GANs have been utilized in medical image analysis for various tasks, including data augmentation, image creation, and domain adaptation.
GANs can generate synthetic samples that can be used to increase the available dataset.
It is essential to note that the use of GANs in medical imaging is still an active area of research to ensure that the produced images are of high quality and suitable for use in clinical settings.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: One way to expand the available dataset for training AI models in the medical
field is through the use of Generative Adversarial Networks (GANs) for data
augmentation. GANs work by employing a generator network to create new data
samples that are then assessed by a discriminator network to determine their
similarity to real samples. The discriminator network is taught to
differentiate between actual and synthetic samples, while the generator system
is trained to generate data that closely resemble real ones. The process is
repeated until the generator network can produce synthetic data that is
indistinguishable from genuine data. GANs have been utilized in medical image
analysis for various tasks, including data augmentation, image creation, and
domain adaptation. They can generate synthetic samples that can be used to
increase the available dataset, especially in cases where obtaining large
amounts of genuine data is difficult or unethical. However, it is essential to
note that the use of GANs in medical imaging is still an active area of
research to ensure that the produced images are of high quality and suitable
for use in clinical settings.
Related papers
- Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks [3.3903891679981593]
We present Bias-transforming Generative Adversarial Networks (Bt-GAN), a GAN-based synthetic data generator specifically designed for the healthcare domain.
Our results demonstrate that Bt-GAN achieves SOTA accuracy while significantly improving fairness and minimizing bias.
arXiv Detail & Related papers (2024-04-21T12:16:38Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Distributed Traffic Synthesis and Classification in Edge Networks: A
Federated Self-supervised Learning Approach [83.2160310392168]
This paper proposes FS-GAN to support automatic traffic analysis and synthesis over a large number of heterogeneous datasets.
FS-GAN is composed of multiple distributed Generative Adversarial Networks (GANs)
FS-GAN can classify data of unknown types of service and create synthetic samples that capture the traffic distribution of the unknown types.
arXiv Detail & Related papers (2023-02-01T03:23:11Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
State of the art models like Recurrent Generative Adrial Networks (RGAN) are used to generate realistic synthetic data.
In this paper, transformer based generative adversarial networks which have global attention on data, are compared on PAMAP2 and Real World Human Activity Recognition data sets with RGAN.
arXiv Detail & Related papers (2021-09-02T16:47:29Z) - Ensembles of GANs for synthetic training data generation [7.835101177261939]
Insufficient training data is a major bottleneck for most deep learning practices.
This work investigates the use of synthetic images, created by generative adversarial networks (GANs), as the only source of training data.
arXiv Detail & Related papers (2021-04-23T19:38:48Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Overcoming Barriers to Data Sharing with Medical Image Generation: A
Comprehensive Evaluation [17.983449515155414]
We utilize Generative Adversarial Networks (GANs) to create derived medical imaging datasets consisting entirely of synthetic patient data.
The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information.
We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset.
arXiv Detail & Related papers (2020-11-29T15:41:46Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
Generative Adversarial Networks (GANs) have made great progress in synthesizing realistic images in recent years.
GANs are prone to underfitting or overfitting, making the analysis of them difficult and constrained.
We train them on artificial datasets where there are infinitely many samples and the real data distributions are simple.
We find that training mixtures of GANs leads to more performance gain compared to increasing the network depth or width.
arXiv Detail & Related papers (2020-07-13T14:51:02Z) - Generative Adversarial Networks (GANs): An Overview of Theoretical
Model, Evaluation Metrics, and Recent Developments [9.023847175654602]
Generative Adversarial Network (GAN) is an effective method to produce samples of large-scale data distribution.
GANs provide an appropriate way to learn deep representations without widespread use of labeled training data.
In GANs, the generative model is estimated via a competitive process where the generator and discriminator networks are trained simultaneously.
arXiv Detail & Related papers (2020-05-27T05:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.