Ensembles of GANs for synthetic training data generation
- URL: http://arxiv.org/abs/2104.11797v1
- Date: Fri, 23 Apr 2021 19:38:48 GMT
- Title: Ensembles of GANs for synthetic training data generation
- Authors: Gabriel Eilertsen, Apostolia Tsirikoglou, Claes Lundstr\"om, Jonas
Unger
- Abstract summary: Insufficient training data is a major bottleneck for most deep learning practices.
This work investigates the use of synthetic images, created by generative adversarial networks (GANs), as the only source of training data.
- Score: 7.835101177261939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insufficient training data is a major bottleneck for most deep learning
practices, not least in medical imaging where data is difficult to collect and
publicly available datasets are scarce due to ethics and privacy. This work
investigates the use of synthetic images, created by generative adversarial
networks (GANs), as the only source of training data. We demonstrate that for
this application, it is of great importance to make use of multiple GANs to
improve the diversity of the generated data, i.e. to sufficiently cover the
data distribution. While a single GAN can generate seemingly diverse image
content, training on this data in most cases lead to severe over-fitting. We
test the impact of ensembled GANs on synthetic 2D data as well as common image
datasets (SVHN and CIFAR-10), and using both DCGANs and progressively growing
GANs. As a specific use case, we focus on synthesizing digital pathology
patches to provide anonymized training data.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Medical Imaging Complexity and its Effects on GAN Performance [1.776717121506676]
Medical image synthesis via generative adversarial networks (GANs) emerged as a powerful method for synthetically generating photo-realistic images.
We experimentally establish benchmarks that measure the relationship between a sample dataset size and the fidelity of the generated images.
We conduct experiments with two state-of-the-art GANs, StyleGAN 3 and SPADE-GAN, trained on multiple medical imaging datasets with variable sample sizes.
arXiv Detail & Related papers (2024-10-23T15:28:25Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - UnitedHuman: Harnessing Multi-Source Data for High-Resolution Human
Generation [59.77275587857252]
A holistic human dataset inevitably has insufficient and low-resolution information on local parts.
We propose to use multi-source datasets with various resolution images to jointly learn a high-resolution human generative model.
arXiv Detail & Related papers (2023-09-25T17:58:46Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - Generative Adversarial Networks for Data Augmentation [0.0]
GANs have been utilized in medical image analysis for various tasks, including data augmentation, image creation, and domain adaptation.
GANs can generate synthetic samples that can be used to increase the available dataset.
It is essential to note that the use of GANs in medical imaging is still an active area of research to ensure that the produced images are of high quality and suitable for use in clinical settings.
arXiv Detail & Related papers (2023-06-03T06:33:33Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
We propose an extendable and elastic learning framework to preserve privacy and security.
The proposed framework is named distributed Asynchronized Discriminator Generative Adrial Networks (AsynDGAN)
arXiv Detail & Related papers (2020-12-15T20:41:24Z) - Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming [3.4788711710826083]
We propose an alternative solution with respect to the common data augmentation methods, applying it to the problem of crop/weed segmentation in precision farming.
We create semi-artificial samples by replacing the most relevant object classes (i.e., crop and weeds) with their synthesized counterparts.
In addition to RGB data, we take into account also near-infrared (NIR) information, generating four channel multi-spectral synthetic images.
arXiv Detail & Related papers (2020-09-12T08:49:36Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
Generative Adversarial Networks (GANs) have made great progress in synthesizing realistic images in recent years.
GANs are prone to underfitting or overfitting, making the analysis of them difficult and constrained.
We train them on artificial datasets where there are infinitely many samples and the real data distributions are simple.
We find that training mixtures of GANs leads to more performance gain compared to increasing the network depth or width.
arXiv Detail & Related papers (2020-07-13T14:51:02Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
arXiv Detail & Related papers (2020-06-15T10:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.