Tensor train optimization of parametrized quantum circuits
- URL: http://arxiv.org/abs/2306.02024v1
- Date: Sat, 3 Jun 2023 06:50:00 GMT
- Title: Tensor train optimization of parametrized quantum circuits
- Authors: Georgii Paradezhenko, Anastasiia Pervishko, Dmitry Yudin
- Abstract summary: We consider parametrized quantum circuits composed of a low-depth hardware-efficient ansatz and Hamiltonian variational ansatz.
We discuss on the advantage of using tensor train based optimization, especially in the presence of noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine a particular realization of derivative-free method as implemented
on tensor train based optimization to the variational quantum eigensolver. As
an example, we consider parametrized quantum circuits composed of a low-depth
hardware-efficient ansatz and Hamiltonian variational ansatz for addressing the
ground state of the transverse field Ising model. We further make a comparison
with gradient-based optimization techniques and discuss on the advantage of
using tensor train based optimization, especially in the presence of noise.
Related papers
- Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Variational quantum algorithm for experimental photonic multiparameter
estimation [0.0]
We develop a variational approach to efficiently optimize a quantum phase sensor operating in a noisy environment.
By exploiting the high reconfigurability of an integrated photonic device, we implement a hybrid quantum-classical feedback loop.
Our experimental results reveal significant improvements in terms of estimation accuracy and noise robustness.
arXiv Detail & Related papers (2023-08-04T18:01:14Z) - Parsimonious Optimisation of Parameters in Variational Quantum Circuits [1.303764728768944]
We propose a novel Quantum-Gradient Sampling that requires the execution of at most two circuits per iteration to update the optimisable parameters.
Our proposed method achieves similar convergence rates to classical gradient descent, and empirically outperforms gradient coordinate descent, and SPSA.
arXiv Detail & Related papers (2023-06-20T18:50:18Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
We introduce the Tabu Enhanced Hybrid Quantum Optimization metaheuristic approach useful for optimization problem solving on a quantum hardware.
We address the theoretical convergence of the proposed scheme from the viewpoint of the collisions in the object which stores the tabu states, based on the Ising model.
arXiv Detail & Related papers (2022-09-05T07:23:03Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers.
We introduce the idea of learning surrogate models for variational circuits using few experimental measurements.
We then perform parameter optimization using these models as opposed to the original data.
arXiv Detail & Related papers (2022-04-12T00:15:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Feedback-based quantum optimization [0.0]
We introduce a feedback-based strategy for quantum optimization, where the results of qubit measurements are used to constructively assign values to quantum circuit parameters.
We show that this procedure results in an estimate of the optimization problem solution that improves monotonically with the depth of the quantum circuit.
arXiv Detail & Related papers (2021-03-15T18:01:03Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Estimating the gradient and higher-order derivatives on quantum hardware [1.2891210250935146]
We show how arbitrary-order derivatives can be analytically evaluated in terms of simple parameter-shift rules.
We also consider the impact of statistical noise by studying the mean squared error of different derivative estimators.
arXiv Detail & Related papers (2020-08-14T18:00:10Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.