論文の概要: Exploring Global and Local Information for Anomaly Detection with Normal
Samples
- arxiv url: http://arxiv.org/abs/2306.02025v1
- Date: Sat, 3 Jun 2023 06:51:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 20:32:25.415489
- Title: Exploring Global and Local Information for Anomaly Detection with Normal
Samples
- Title(参考訳): 正常サンプルを用いた異常検出のためのグローバル・ローカル情報探索
- Authors: Fan Xu, Nan Wang, Xibin Zhao
- Abstract要約: 異常検出は、通常のパターンに従わないデータを検出することを目的としており、そのようなデータはoutliersとも呼ばれる。
多くの現実的なシナリオでは、正常な振る舞いに従うサンプルのみが観察されるが、異常な情報はほとんど得られない。
本稿では, 異常検出手法であるGALDetectorを提案する。
- 参考スコア(独自算出の注目度): 23.68962459770419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection aims to detect data that do not conform to regular
patterns, and such data is also called outliers. The anomalies to be detected
are often tiny in proportion, containing crucial information, and are suitable
for application scenes like intrusion detection, fraud detection, fault
diagnosis, e-commerce platforms, et al. However, in many realistic scenarios,
only the samples following normal behavior are observed, while we can hardly
obtain any anomaly information. To address such problem, we propose an anomaly
detection method GALDetector which is combined of global and local information
based on observed normal samples. The proposed method can be divided into a
three-stage method. Firstly, the global similar normal scores and the local
sparsity scores of unlabeled samples are computed separately. Secondly,
potential anomaly samples are separated from the unlabeled samples
corresponding to these two scores and corresponding weights are assigned to the
selected samples. Finally, a weighted anomaly detector is trained by loads of
samples, then the detector is utilized to identify else anomalies. To evaluate
the effectiveness of the proposed method, we conducted experiments on three
categories of real-world datasets from diverse domains, and experimental
results show that our method achieves better performance when compared with
other state-of-the-art methods.
- Abstract(参考訳): 異常検出は、通常のパターンに従わないデータを検出することを目的としており、そのようなデータはoutliersとも呼ばれる。
検出される異常はしばしば比率が小さく、重要な情報が含まれており、侵入検出、不正検出、障害診断、eコマースプラットフォームなどのアプリケーションシーンに適している。
しかし、多くの現実的なシナリオでは、通常の行動に従うサンプルのみが観察されるが、異常情報はほとんど得られない。
このような問題に対処するために,観測サンプルに基づいてグローバル情報とローカル情報を組み合わせた異常検出手法GALDetectorを提案する。
提案手法は三段階法に分類できる。
まず、グローバルな類似の正規スコアとラベルなしサンプルの局所空間スコアを別々に計算する。
次に、これらの2つのスコアに対応するラベルのないサンプルから電位異常サンプルを分離し、選択されたサンプルに対応する重量を割り当てる。
最後に、重み付き異常検出器はサンプルの負荷によって訓練され、検出器は他の異常を識別するために利用される。
提案手法の有効性を評価するために,様々な領域からの実世界のデータセットを3つのカテゴリに分けて実験を行い,実験により,他の最先端手法と比較して優れた性能が得られることを示した。
関連論文リスト
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
そこで本研究では,偏差学習を応用して,異常スコアをエンドツーエンドに計算する手法を提案する。
提案手法は競合する手法を超越し,データ汚染の存在下での安定性とロバスト性を示す。
論文 参考訳(メタデータ) (2024-11-14T16:10:15Z) - Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies [7.021105583098609]
近年のアプローチでは、通常のサンプルから合成異常を生成するためにドメイン固有の変換や摂動を活用することに重点を置いている。
そこで本研究では,条件付き摂動器と判別器を併用したドメインに依存しない新しい手法を提案する。
我々は,最先端のベンチマークよりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2024-09-16T08:15:23Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - Set Features for Fine-grained Anomaly Detection [32.36217153362305]
本稿では,各サンプルの分布をモデル化する特徴セットを提案する。
簡単な密度推定法を用いて各試料の異常スコアを算出する。
我々の単純な実装アプローチは、画像レベルの論理異常検出における最先端技術よりも優れています。
論文 参考訳(メタデータ) (2023-02-23T18:58:57Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
異常検出は、トレーニング観察と何らかの点で異なるサンプルを認識することである。
最近の最先端のディープラーニングに基づく異常検出手法は、計算コスト、複雑さ、不安定な訓練手順、非自明な実装に悩まされている。
我々は、軽量な畳み込みニューラルネットワークを訓練し、異常検出における最先端の性能に到達するための単純な学習手順を活用する。
論文 参考訳(メタデータ) (2022-07-03T20:11:51Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
クリーンサンプルのみを用いたアンタングル学習に基づく一対一画像異常検出システムを提案する。
3つのデータセットを用いて実験したところ、OIADは90%以上の異常を検出できる一方で、誤報率も低く抑えられることがわかった。
論文 参考訳(メタデータ) (2020-01-18T09:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。