論文の概要: GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection
- arxiv url: http://arxiv.org/abs/2406.07487v3
- Date: Mon, 9 Sep 2024 07:23:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 02:11:38.415400
- Title: GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection
- Title(参考訳): GLAD:教師なし異常検出のためのグローバルおよび局所適応拡散モデルによるより良い再構成を目指して
- Authors: Hang Yao, Ming Liu, Haolin Wang, Zhicun Yin, Zifei Yan, Xiaopeng Hong, Wangmeng Zuo,
- Abstract要約: 拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
- 参考スコア(独自算出の注目度): 60.78684630040313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown superior performance on unsupervised anomaly detection tasks. Since trained with normal data only, diffusion models tend to reconstruct normal counterparts of test images with certain noises added. However, these methods treat all potential anomalies equally, which may cause two main problems. From the global perspective, the difficulty of reconstructing images with different anomalies is uneven. Therefore, instead of utilizing the same setting for all samples, we propose to predict a particular denoising step for each sample by evaluating the difference between image contents and the priors extracted from diffusion models. From the local perspective, reconstructing abnormal regions differs from normal areas even in the same image. Theoretically, the diffusion model predicts a noise for each step, typically following a standard Gaussian distribution. However, due to the difference between the anomaly and its potential normal counterpart, the predicted noise in abnormal regions will inevitably deviate from the standard Gaussian distribution. To this end, we propose introducing synthetic abnormal samples in training to encourage the diffusion models to break through the limitation of standard Gaussian distribution, and a spatial-adaptive feature fusion scheme is utilized during inference. With the above modifications, we propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection, which introduces appealing flexibility and achieves anomaly-free reconstruction while retaining as much normal information as possible. Extensive experiments are conducted on three commonly used anomaly detection datasets (MVTec-AD, MPDD, and VisA) and a printed circuit board dataset (PCB-Bank) we integrated, showing the effectiveness of the proposed method.
- Abstract(参考訳): 拡散モデルは教師なし異常検出タスクにおいて優れた性能を示した。
拡散モデルは、通常のデータのみを用いて訓練されているため、特定のノイズを加えたテスト画像の通常の画像を再構成する傾向がある。
しかしながら、これらの手法は全ての潜在的な異常を等しく扱い、2つの主要な問題を引き起こす可能性がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
そこで, 拡散モデルから抽出した画像内容と先行値との差を評価することにより, サンプル毎に, 同一設定を使わずに, サンプル毎に特定の認知ステップを予測することを提案する。
局所的な見地からすると、異常領域の再構成は、同じ画像であっても通常の領域と異なる。
理論的には、拡散モデルは各ステップのノイズを予測し、典型的には標準ガウス分布に従う。
しかし、異常と潜在的な正規分布の違いにより、異常領域の予測ノイズは標準ガウス分布から必然的に逸脱する。
そこで本研究では,標準ガウス分布の限界を突破するよう拡散モデルに促すために,学習中に合成異常サンプルを導入し,推論中に空間適応型特徴融合方式を用いることを提案する。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLAD)を提案する。
一般に使用されている3つの異常検出データセット (MVTec-AD, MPDD, VisA) と私たちが統合したプリント基板データセット (PCB-Bank) を用いて, 提案手法の有効性を示した。
関連論文リスト
- Ensembled Cold-Diffusion Restorations for Unsupervised Anomaly Detection [7.94529540044472]
Unsupervised Anomaly Detection (UAD) は、異常のないデータセットから学習した規範的分布と比較したテストサンプル中の異常を識別することを目的としている。
生成モデルに基づくアプローチは、異常のないテスト画像を生成することによって解釈可能性を提供するが、通常、微妙な異常を識別することはできない。
本稿では, 両戦略の強みを組み合わせた新しい手法を提案する。 生成型冷拡散パイプラインは, 合成劣化画像の正常な元の外観に戻すことを目標として訓練される。
論文 参考訳(メタデータ) (2024-07-09T08:02:46Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
オープンセット型教師付き異常検出(OSAD)は、トレーニング中に見られたいくつかの異常クラスのサンプルを利用して、見えない異常を検出することを目的としている。
異種不均一分布の多様集合をシミュレートする新しいアプローチ,すなわちAHL(Anomaly Heterogeneity Learning)を導入する。
AHL can 1) は, 目に見える異常や見えない異常の検出において, 最先端のOSADモデルを大幅に強化し, 2) 新たな領域の異常を効果的に一般化することを示した。
論文 参考訳(メタデータ) (2023-10-19T14:47:11Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
医用画像における教師なし異常検出は、訓練中に異常データを必要とせず、任意の異常を検出し、位置決めすることを目的としている。
現在の最先端の手法のほとんどは、画像上で直接動作する潜在変数生成モデルを使用している。
コントラストプレテクストタスクで訓練されたエンコーダの低次元表現空間において,正規サンプルの分布を直接モデル化するCRADLを提案する。
論文 参考訳(メタデータ) (2023-01-05T16:07:49Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with
Anomaly-Aware Bidirectional GANs [15.399369134281775]
異常検出の目標は、正常なサンプルから異常なサンプルを特定することである。
本稿では,少数の異常がトレーニング段階で利用可能であることが想定されているが,これらは複数の異常タイプからのみ収集されていると推定されている。
本稿では,通常のサンプルをモデル化するだけでなく,収集した異常に対して低密度値の割り当てを保証できる確率分布の学習を提案する。
論文 参考訳(メタデータ) (2022-04-28T08:12:49Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Acoustic anomaly detection via latent regularized gaussian mixture
generative adversarial networks [30.970377781506258]
クラス不均衡の問題と異常な事例の欠如に悩まされる。
本稿では,ガウス混合生成適応ネットワーク(GMGAN)を半教師付き学習フレームワークで提案する。
実験により,本モデルは従来の手法よりも明らかに優れており,DCASEデータセットの最先端結果が得られることが示された。
論文 参考訳(メタデータ) (2020-02-04T03:39:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。