論文の概要: DOS: Diverse Outlier Sampling for Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2306.02031v2
- Date: Sun, 25 Feb 2024 06:59:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 00:51:18.207807
- Title: DOS: Diverse Outlier Sampling for Out-of-Distribution Detection
- Title(参考訳): dos: 分散検出のための多様な外れ値サンプリング
- Authors: Wenyu Jiang, Hao Cheng, Mingcai Chen, Chongjun Wang, Hongxin Wei
- Abstract要約: 我々は,OOD検出性能の外れ値のサンプリングには多様性が重要であることを示した。
本稿では,多種多様かつ情報的外乱を選択するためにDOS (Diverse Outlier Smpling) という,単純で斬新なサンプリング戦略を提案する。
- 参考スコア(独自算出の注目度): 18.964462007139055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural networks are known to give overconfident prediction for
out-of-distribution inputs when deployed in the open world. It is common
practice to leverage a surrogate outlier dataset to regularize the model during
training, and recent studies emphasize the role of uncertainty in designing the
sampling strategy for outlier dataset. However, the OOD samples selected solely
based on predictive uncertainty can be biased towards certain types, which may
fail to capture the full outlier distribution. In this work, we empirically
show that diversity is critical in sampling outliers for OOD detection
performance. Motivated by the observation, we propose a straightforward and
novel sampling strategy named DOS (Diverse Outlier Sampling) to select diverse
and informative outliers. Specifically, we cluster the normalized features at
each iteration, and the most informative outlier from each cluster is selected
for model training with absent category loss. With DOS, the sampled outliers
efficiently shape a globally compact decision boundary between ID and OOD data.
Extensive experiments demonstrate the superiority of DOS, reducing the average
FPR95 by up to 25.79% on CIFAR-100 with TI-300K.
- Abstract(参考訳): 現代のニューラルネットワークは、オープンワールドにデプロイされたときに、分散していない入力に対して自信過剰な予測を与えることが知られている。
トレーニング中にモデルを正規化するためにサロゲートアウトリアーデータセットを利用するのが一般的であり、最近の研究では、アウトリアーデータセットのサンプリング戦略の設計における不確実性の役割を強調している。
しかし、予測不確実性のみに基づいて選択されたOODサンプルは、特定のタイプに偏りがあり、完全な外れ値分布の取得に失敗する可能性がある。
本研究では,OOD検出性能の外れ値のサンプリングに多様性が重要であることを実証的に示す。
本研究の目的は,多種多様かつ情報的外乱を選択するためのDOS(Diverse Outlier Smpling)という,単純で斬新なサンプリング手法を提案することである。
具体的には、各イテレーションで正規化された特徴をクラスタ化し、各クラスタから最も有意義な外れ値を選択して、カテゴリ損失のないモデルトレーニングを行う。
DOSでは、サンプル出力はIDデータとOODデータの間のグローバルにコンパクトな決定境界を効率的に形成する。
大規模な実験はDOSの優位性を示し、TI-300KのCIFAR-100では平均FPR95を25.79%削減した。
関連論文リスト
- Debiased Sample Selection for Combating Noisy Labels [24.296451733127956]
サンプル選択におけるバイアス学習のためのnoIse-Tolerant Expert Model (ITEM)を提案する。
具体的には、トレーニングバイアスを軽減するために、複数の専門家と統合した堅牢なネットワークアーキテクチャを設計します。
2つのクラス識別型ミニバッチの混合によるトレーニングにより、モデルが不均衡なトレーニングセットの効果を緩和する。
論文 参考訳(メタデータ) (2024-01-24T10:37:28Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
我々は、時間的デュアルディープス・スコーリング(TDDS)と呼ばれる新しいデータセット・プルーニング手法を提案する。
本手法は,10%のトレーニングデータで54.51%の精度を達成し,ランダム選択を7.83%以上,他の比較手法を12.69%以上上回る結果を得た。
論文 参考訳(メタデータ) (2023-11-22T03:45:30Z) - Out-of-distribution Object Detection through Bayesian Uncertainty
Estimation [10.985423935142832]
OOD検出のための新しい,直感的で,スケーラブルなオブジェクト検出手法を提案する。
提案手法は,提案したガウス分布からの重みパラメータサンプリングにより,IDデータとOODデータを識別することができる。
BDD100kおよびVOCデータセットでトレーニングした場合,FPR95スコアを最大8.19%削減し,AUROCスコアを最大13.94%向上させることで,ベイズ対象検出器のOOD識別性能が良好であることを実証した。
論文 参考訳(メタデータ) (2023-10-29T19:10:52Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-Distribution(OOD)検出は、現実のアプリケーションに信頼性の高い機械学習モデルをデプロイするために重要である。
近年, 外部曝露によるOOD検出に有意な結果が得られた。
本稿では,補助外乱量に基づく情報外挿による効果的なOOD検出のための新しい枠組み,すなわちDivOE(Diversified Outlier Exposure)を提案する。
論文 参考訳(メタデータ) (2023-10-21T07:16:09Z) - Selecting Learnable Training Samples is All DETRs Need in Crowded
Pedestrian Detection [72.97320260601347]
混雑した歩行者検出では, サンプル選択法が不適切であるため, DETRの性能は相変わらず不満足である。
制約誘導ラベル割り当てスキーム(CGLA)からなる群集歩行者のサンプル選択を提案する。
実験の結果,提案したSSCPは推論のオーバーヘッドを発生させることなく,ベースラインを効果的に改善することがわかった。
論文 参考訳(メタデータ) (2023-05-18T08:28:01Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
我々は、ロバストアライメントのための新しい変分非局所ネットワークベース外乱除去フレームワークを開発した。
そこで本稿では, 投票に基づく不整合探索手法を提案し, 変換推定のための高品質な仮説的不整合をクラスタリングする。
論文 参考訳(メタデータ) (2023-04-04T03:48:56Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - ScatterSample: Diversified Label Sampling for Data Efficient Graph
Neural Network Learning [22.278779277115234]
グラフニューラルネットワーク(GNN)トレーニングが高価であるいくつかのアプリケーションでは、新しいインスタンスのラベル付けが高価である。
データ効率のよいアクティブサンプリングフレームワークであるScatterSampleを開発し、アクティブな学習環境下でGNNを訓練する。
5つのデータセットに対する実験により、ScatterSampleは他のGNNのアクティブラーニングベースラインよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-06-09T04:05:02Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
本稿では,選択したサンプルを損失関数として一般化する1対3の学習目標を提案する。
提案した1対3のサンプルは,ReIDトレーニングフレームワークにシームレスに統合できる。
論文 参考訳(メタデータ) (2020-12-10T06:37:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。