Variational Gaussian Process Diffusion Processes
- URL: http://arxiv.org/abs/2306.02066v3
- Date: Tue, 27 Feb 2024 16:18:27 GMT
- Title: Variational Gaussian Process Diffusion Processes
- Authors: Prakhar Verma, Vincent Adam, Arno Solin
- Abstract summary: Diffusion processes are a class of differential equations (SDEs) providing a rich family of expressive models.
Probabilistic inference and learning under generative models with latent processes endowed with a non-linear diffusion process prior are intractable problems.
We build upon work within variational inference, approximating the posterior process as a linear diffusion process, and point out pathologies in the approach.
- Score: 17.716059928867345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion processes are a class of stochastic differential equations (SDEs)
providing a rich family of expressive models that arise naturally in dynamic
modelling tasks. Probabilistic inference and learning under generative models
with latent processes endowed with a non-linear diffusion process prior are
intractable problems. We build upon work within variational inference,
approximating the posterior process as a linear diffusion process, and point
out pathologies in the approach. We propose an alternative parameterization of
the Gaussian variational process using a site-based exponential family
description. This allows us to trade a slow inference algorithm with
fixed-point iterations for a fast algorithm for convex optimization akin to
natural gradient descent, which also provides a better objective for learning
model parameters.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
We propose a fully Bayesian approach that treats the kernel hyper parameters as random variables and constructs coupled differential equations (SDEs) to learn their posterior distribution and that of inducing points.
Our approach provides a time-varying, comprehensive, and realistic posterior approximation through coupling variables using SDE methods.
Our work opens up exciting research avenues for advancing Bayesian inference and offers a powerful modeling tool for continuous-time Gaussian processes.
arXiv Detail & Related papers (2024-08-12T11:41:07Z) - Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference [6.37512592611305]
In deep Gaussian processes (DGPs) a sparse integration location called inducing points are selected to approximate the posterior distribution of the model.
Traditional variational inference approaches to posterior approximation often lead to significant bias.
We propose an alternative method called Denoising Diffusion Variational Inference (DDVI) that uses a denoising diffusion differential equation (SDE) to generate posterior samples of inducing variables.
arXiv Detail & Related papers (2024-07-24T06:39:58Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Moment-Based Variational Inference for Stochastic Differential Equations [31.494103873662343]
We construct the variational process as a controlled version of the prior process.
We approximate the posterior by a set of moment functions.
In combination with moment closure, the smoothing problem is reduced to a deterministic optimal control problem.
arXiv Detail & Related papers (2021-03-01T13:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.