A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions
- URL: http://arxiv.org/abs/2306.02149v2
- Date: Tue, 30 Apr 2024 13:56:37 GMT
- Title: A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions
- Authors: Abdullah Makkeh, Marcel Graetz, Andreas C. Schneider, David A. Ehrlich, Viola Priesemann, Michael Wibral,
- Abstract summary: We introduce 'infomorphic' neural networks to perform tasks from supervised, unsupervised and memory learning.
By leveraging the interpretable nature of the PID framework, infomorphic networks represent a valuable tool to advance our understanding of the intricate structure of local learning.
- Score: 1.5236380958983644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the impressive performance of biological and artificial networks, an intuitive understanding of how their local learning dynamics contribute to network-level task solutions remains a challenge to this date. Efforts to bring learning to a more local scale indeed lead to valuable insights, however, a general constructive approach to describe local learning goals that is both interpretable and adaptable across diverse tasks is still missing. We have previously formulated a local information processing goal that is highly adaptable and interpretable for a model neuron with compartmental structure. Building on recent advances in Partial Information Decomposition (PID), we here derive a corresponding parametric local learning rule, which allows us to introduce 'infomorphic' neural networks. We demonstrate the versatility of these networks to perform tasks from supervised, unsupervised and memory learning. By leveraging the interpretable nature of the PID framework, infomorphic networks represent a valuable tool to advance our understanding of the intricate structure of local learning.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Locally Supervised Learning with Periodic Global Guidance [19.41730292017383]
We propose Periodically Guided local Learning (PGL) to reinstate the global objective repetitively into the local-loss based training of neural networks.
We show that a simple periodic guidance scheme begets significant performance gains while having a low memory footprint.
arXiv Detail & Related papers (2022-08-01T13:06:26Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Active Predictive Coding Networks: A Neural Solution to the Problem of
Learning Reference Frames and Part-Whole Hierarchies [1.5990720051907859]
We introduce Active Predictive Coding Networks (APCNs)
APCNs are a new class of neural networks that solve a major problem posed by Hinton and others in the fields of artificial intelligence and brain modeling.
We demonstrate that APCNs can (a) learn to parse images into part-whole hierarchies, (b) learn compositional representations, and (c) transfer their knowledge to unseen classes of objects.
arXiv Detail & Related papers (2022-01-14T21:22:48Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
We propose a novel Entropy-guided Reinforced Partial Convolutional Network (ERPCNet)
ERPCNet extracts and aggregates localities based on semantic relevance and visual correlations without human-annotated regions.
It not only discovers global-cooperative localities dynamically but also converges faster for policy gradient optimization.
arXiv Detail & Related papers (2021-11-03T11:13:13Z) - Navigating the Kaleidoscope of COVID-19 Misinformation Using Deep
Learning [0.76146285961466]
We propose an effective model to capture both the local and global context of the target domain.
We show that: (i) the deep Transformer-based pre-trained models, utilized via the mixed-domain transfer learning, are only good at capturing the local context, thus exhibits poor generalization.
A combination of shallow network-based domain-specific models and convolutional neural networks can efficiently extract local as well as global context directly from the target data in a hierarchical fashion, enabling it to offer a more generalizable solution.
arXiv Detail & Related papers (2021-09-19T15:49:25Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - Deep compositional robotic planners that follow natural language
commands [21.481360281719006]
We show how a sampling-based robotic planner can be augmented to learn to understand a sequence of natural language commands.
Our approach combines a deep network structured according to the parse of a complex command that includes objects, verbs, spatial relations, and attributes.
arXiv Detail & Related papers (2020-02-12T19:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.