論文の概要: Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing
- arxiv url: http://arxiv.org/abs/2306.02235v2
- Date: Mon, 18 Dec 2023 15:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 00:28:35.362595
- Title: Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing
- Title(参考訳): 一般非線形混合下における干渉からの線形因果表現の学習
- Authors: Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam,
Bernhard Sch\"olkopf, Pradeep Ravikumar
- Abstract要約: 介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
- 参考スコア(独自算出の注目度): 52.66151568785088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning causal representations from unknown, latent
interventions in a general setting, where the latent distribution is Gaussian
but the mixing function is completely general. We prove strong identifiability
results given unknown single-node interventions, i.e., without having access to
the intervention targets. This generalizes prior works which have focused on
weaker classes, such as linear maps or paired counterfactual data. This is also
the first instance of causal identifiability from non-paired interventions for
deep neural network embeddings. Our proof relies on carefully uncovering the
high-dimensional geometric structure present in the data distribution after a
non-linear density transformation, which we capture by analyzing quadratic
forms of precision matrices of the latent distributions. Finally, we propose a
contrastive algorithm to identify the latent variables in practice and evaluate
its performance on various tasks.
- Abstract(参考訳): 一般環境での未知の潜伏的介入から因果表現を学習する問題について検討し, 潜伏分布はガウス的だが混合関数は完全に一般である。
単一ノードの干渉が未知である場合、例えば介入対象にアクセスできることなく、強い識別可能性を示す。
これは、線形写像やペアの対実データのようなより弱いクラスに焦点を当てた先行研究を一般化する。
これは、ディープニューラルネットワーク埋め込みに対する非ペア型介入による因果識別可能性の最初の例でもある。
この証明は、非線形密度変換後のデータ分布に存在する高次元幾何学的構造を注意深く解明することに依存している。
最後に,実際の潜在変数を識別し,様々なタスクにおけるその性能を評価するためのコントラストアルゴリズムを提案する。
関連論文リスト
- Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Learning nonparametric latent causal graphs with unknown interventions [18.6470340274888]
潜在因果グラフが非パラメトリック同定可能な条件を確立する。
隠れ変数の数は分かっていないと仮定し、隠された変数に対して少なくとも1つの未知の介入が必要であることを示す。
論文 参考訳(メタデータ) (2023-06-05T14:06:35Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
我々は、異なる、しかし相関のある特徴に基づいて訓練された一般化線形モデルの集合における揺らぎの研究の理論を開発する。
一般凸損失と高次元限界における正則化のための経験的リスク最小化器の結合分布の完全な記述を提供する。
論文 参考訳(メタデータ) (2022-01-31T17:44:58Z) - Nonlinear Invariant Risk Minimization: A Causal Approach [5.63479133344366]
非線形環境下での分布外一般化を可能にする学習パラダイムを提案する。
我々は、非常に単純な変換までデータ表現の識別性を示す。
合成データと実世界のデータセットの両方に関する広範な実験は、我々のアプローチが様々なベースラインメソッドを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2021-02-24T15:38:41Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
分離性の現象が明らかになり、機械学習で人工知能(AI)システムのエラーを修正し、AI不安定性を分析するために使用された。
エラーやエラーのクラスタは、残りのデータから分離することができる。
AIシステムを修正する能力は、それに対する攻撃の可能性も開き、高次元性は、同じ分離性によって引き起こされる脆弱性を誘発する。
論文 参考訳(メタデータ) (2020-10-11T13:12:41Z) - Generalization Error for Linear Regression under Distributed Learning [0.0]
未知のノードがノードネットワーク上に分散されている設定について検討する。
本稿では,ノード上の未知のノードの分割に対する一般化誤差の依存性の解析的特徴について述べる。
論文 参考訳(メタデータ) (2020-04-30T08:49:46Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。