論文の概要: Identifiable Latent Neural Causal Models
- arxiv url: http://arxiv.org/abs/2403.15711v1
- Date: Sat, 23 Mar 2024 04:13:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:22:21.770773
- Title: Identifiable Latent Neural Causal Models
- Title(参考訳): 潜在性神経因果モデル
- Authors: Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi,
- Abstract要約: 因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
- 参考スコア(独自算出の注目度): 82.14087963690561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data. It is particularly good at predictions under unseen distribution shifts, because these shifts can generally be interpreted as consequences of interventions. Hence leveraging {seen} distribution shifts becomes a natural strategy to help identifying causal representations, which in turn benefits predictions where distributions are previously {unseen}. Determining the types (or conditions) of such distribution shifts that do contribute to the identifiability of causal representations is critical. This work establishes a {sufficient} and {necessary} condition characterizing the types of distribution shifts for identifiability in the context of latent additive noise models. Furthermore, we present partial identifiability results when only a portion of distribution shifts meets the condition. In addition, we extend our findings to latent post-nonlinear causal models. We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations. Our algorithm, guided by our underlying theory, has demonstrated outstanding performance across a diverse range of synthetic and real-world datasets. The empirical observations align closely with the theoretical findings, affirming the robustness and effectiveness of our approach.
- Abstract(参考訳): 因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
これらの変化は一般に介入の結果として解釈できるため、目に見えない分布シフトの下での予測に特に適している。
したがって、 {seen} 分布シフトを活用することは、因果表現の特定を助ける自然な戦略となり、その結果、分布が以前は {unseen} であったような予測に恩恵を与える。
因果表現の識別可能性に寄与する分布シフトの型(または条件)を決定することは重要である。
この研究は、潜在加法的雑音モデル(英語版)の文脈において、識別可能性の分布シフトのタイプを特徴付ける「十分」条件と「必要」条件を確立する。
さらに,分布シフトの一部だけが条件を満たす場合,部分的識別可能性を示す。
また,本症例は非非線形因果モデルに拡張した。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
我々のアルゴリズムは、我々の基礎となる理論で導かれ、多様な合成および実世界のデータセットで優れた性能を示してきた。
実験的な観察は理論的な結果と密接に一致し、我々のアプローチの堅牢性と有効性を確認した。
関連論文リスト
- Identifiability Guarantees for Causal Disentanglement from Purely Observational Data [10.482728002416348]
因果解離は、データの背後にある潜在因果関係について学ぶことを目的としている。
近年の進歩は、(単一の)潜伏因子への介入が可能であると仮定して、識別可能性(identifiability)が確立されている。
非線形因果モデルで同定できる潜伏因子の高精度な評価法を提案する。
論文 参考訳(メタデータ) (2024-10-31T04:18:29Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis [7.895866278697778]
機械学習のアプローチは、一般に独立で同一に分散されたデータ(すなわち、d)の仮定に依存する。
実際、この仮定は環境間の分散シフトによってほとんど常に破られる。
そこで我々は,様々な経験的推定器に適用可能なスコアベースアプローチであるメカニズムシフトスコア(MSS)を提案する。
論文 参考訳(メタデータ) (2022-06-04T15:39:30Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。