論文の概要: When Decentralized Optimization Meets Federated Learning
- arxiv url: http://arxiv.org/abs/2306.02570v1
- Date: Mon, 5 Jun 2023 03:51:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 16:57:09.701220
- Title: When Decentralized Optimization Meets Federated Learning
- Title(参考訳): 分散最適化が連合学習を満たすとき
- Authors: Hongchang Gao, My T. Thai, Jie Wu
- Abstract要約: フェデレーション学習は、分散データから知識を抽出するための新しい学習パラダイムである。
既存のフェデレートされた学習アプローチのほとんどは、単一ポイントの障害に対して脆弱な集中的な設定に集中しています。
この問題に対処する別の戦略は、分散化された通信トポロジである。
- 参考スコア(独自算出の注目度): 41.58479981773202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a new learning paradigm for extracting knowledge from
distributed data. Due to its favorable properties in preserving privacy and
saving communication costs, it has been extensively studied and widely applied
to numerous data analysis applications. However, most existing federated
learning approaches concentrate on the centralized setting, which is vulnerable
to a single-point failure. An alternative strategy for addressing this issue is
the decentralized communication topology. In this article, we systematically
investigate the challenges and opportunities when renovating decentralized
optimization for federated learning. In particular, we discussed them from the
model, data, and communication sides, respectively, which can deepen our
understanding about decentralized federated learning.
- Abstract(参考訳): フェデレーション学習は、分散データから知識を抽出するための新しい学習パラダイムである。
プライバシの保存と通信コストの節約に有利な性質のため、多くのデータ分析アプリケーションに広く研究され、広く応用されている。
しかし、既存のフェデレーション学習アプローチのほとんどは、単一ポイント障害に弱い集中的な設定に集中している。
この問題に対処する別の戦略として、分散通信トポロジがある。
本稿では,連合学習における分散最適化の革新における課題と機会を体系的に検討する。
特に,これらをモデル,データ,コミュニケーションの両面から論じ,分散化されたフェデレーション学習に対する理解を深めることができた。
関連論文リスト
- Robustness of Decentralised Learning to Nodes and Data Disruption [4.062458976723649]
ノードの破壊が集団学習過程に及ぼす影響について検討する。
その結果,分散学習プロセスはネットワーク破壊に対して極めて堅牢であることがわかった。
論文 参考訳(メタデータ) (2024-05-03T12:14:48Z) - Exploring Machine Learning Models for Federated Learning: A Review of
Approaches, Performance, and Limitations [1.1060425537315088]
フェデレートラーニング(Federated Learning)は、個人のデータのプライバシを保護するために強化された分散学習フレームワークである。
危機時には、リアルタイムな意思決定が重要である場合、フェデレートされた学習は、機密データを共有せずに複数のエンティティをまとめて機能させることができる。
本稿では,ここ数年のプライバシ保護機械学習に関する文献を体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-17T19:23:21Z) - Towards Privacy-Aware Causal Structure Learning in Federated Setting [27.5652887311069]
フェデレートされた環境におけるプライバシーに配慮した因果構造学習問題について検討する。
データを集中化せずにデータのプライバシを保存するための2つの新しい戦略を持つ新しいフェデレーションPC(FedPC)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-13T14:54:42Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
自己教師型学習(SSL)のレンズによるラベルなしデータによる分散学習の研究
本研究では,分散学習環境下でのコントラスト学習アルゴリズムの有効性について検討する。
論文 参考訳(メタデータ) (2022-10-20T01:32:41Z) - Exploring Semantic Attributes from A Foundation Model for Federated
Learning of Disjoint Label Spaces [46.59992662412557]
本研究では,特定の対象に敏感でない中レベルの意味的知識(属性など)の伝達を検討する。
我々はFZSL(Federated Zero-Shot Learning)パラダイムを定式化し、複数のローカルクライアントで中レベルのセマンティック知識を学習する。
モデル識別能力を向上させるために,外的知識からの意味的知識増強について検討する。
論文 参考訳(メタデータ) (2022-08-29T10:05:49Z) - Finite-Time Consensus Learning for Decentralized Optimization with
Nonlinear Gossiping [77.53019031244908]
本稿では,非線形ゴシップ(NGO)に基づく分散学習フレームワークを提案する。
コミュニケーション遅延とランダム化チャットが学習にどう影響するかを解析することで,実践的なバリエーションの導出が可能となる。
論文 参考訳(メタデータ) (2021-11-04T15:36:25Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Communication-Computation Efficient Secure Aggregation for Federated
Learning [23.924656276456503]
フェデレーションラーニングは、ノードがデータを共有せずに、複数のノードに分散したデータを使用してニューラルネットワークを訓練する方法です。
セキュアアグリゲーションプリミティブに基づく最近のソリューションでは,プライバシ保護型のフェデレーション学習が可能だったが,通信/計算リソースが大幅に増加した。
通信・計算資源の量を大幅に削減する通信・計算効率のよいセキュアアグリゲーションを提案する。
論文 参考訳(メタデータ) (2020-12-10T03:17:50Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。