Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
- URL: http://arxiv.org/abs/2306.02574v3
- Date: Sat, 16 Mar 2024 18:17:05 GMT
- Title: Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
- Authors: Saghar Adler, Vijay Subramanian,
- Abstract summary: We study the problem of optimal control of a family of discrete-time countable state-space Markov Decision Processes.
We propose an algorithm based on Thompson sampling with dynamically-sized episodes.
We show that our algorithm can be applied to develop approximately optimal control algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models of many real-life applications, such as queuing models of communication networks or computing systems, have a countably infinite state-space. Algorithmic and learning procedures that have been developed to produce optimal policies mainly focus on finite state settings, and do not directly apply to these models. To overcome this lacuna, in this work we study the problem of optimal control of a family of discrete-time countable state-space Markov Decision Processes (MDPs) governed by an unknown parameter $\theta\in\Theta$, and defined on a countably-infinite state space $\mathcal X=\mathbb{Z}_+^d$, with finite action space $\mathcal A$, and an unbounded cost function. We take a Bayesian perspective with the random unknown parameter $\boldsymbol{\theta}^*$ generated via a given fixed prior distribution on $\Theta$. To optimally control the unknown MDP, we propose an algorithm based on Thompson sampling with dynamically-sized episodes: at the beginning of each episode, the posterior distribution formed via Bayes' rule is used to produce a parameter estimate, which then decides the policy applied during the episode. To ensure the stability of the Markov chain obtained by following the policy chosen for each parameter, we impose ergodicity assumptions. From this condition and using the solution of the average cost Bellman equation, we establish an $\tilde O(dh^d\sqrt{|\mathcal A|T})$ upper bound on the Bayesian regret of our algorithm, where $T$ is the time-horizon. Finally, to elucidate the applicability of our algorithm, we consider two different queuing models with unknown dynamics, and show that our algorithm can be applied to develop approximately optimal control algorithms.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs [17.62509045102346]
This paper considers the best policy identification problem in online Constrained Markov Decision Processes (CMDPs)
We are interested in algorithms that are model-free, have low regret, and identify an approximately optimal policy with a high probability.
Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy.
arXiv Detail & Related papers (2023-09-27T04:33:09Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - Structural Estimation of Markov Decision Processes in High-Dimensional
State Space with Finite-Time Guarantees [39.287388288477096]
We consider the task of estimating a structural model of dynamic decisions by a human agent based upon the observable history of implemented actions and visited states.
This problem has an inherent nested structure: in the inner problem, an optimal policy for a given reward function is identified while in the outer problem, a measure of fit is maximized.
We propose a single-loop estimation algorithm with finite time guarantees that is equipped to deal with high-dimensional state spaces.
arXiv Detail & Related papers (2022-10-04T00:11:38Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - A Reinforcement Learning Approach to the Stochastic Cutting Stock
Problem [0.0]
We propose a formulation of the cutting stock problem as a discounted infinite-horizon decision process.
An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost.
arXiv Detail & Related papers (2021-09-20T14:47:54Z) - Implicitly Regularized RL with Implicit Q-Values [42.87920755961722]
The $Q$-function is a central quantity in many Reinforcement Learning (RL) algorithms for which RL agents behave following a (soft)-greedy policy.
We propose to parametrize the $Q$-function implicitly, as the sum of a log-policy and of a value function.
We derive a practical off-policy deep RL algorithm, suitable for large action spaces, and that enforces the softmax relation between the policy and the $Q$-value.
arXiv Detail & Related papers (2021-08-16T12:20:47Z) - Provably Efficient Model-Free Algorithm for MDPs with Peak Constraints [38.2783003051101]
This paper considers the peak Constrained Markov Decision Process (PCMDP), where the agent chooses the policy to maximize total reward in the finite horizon as well as satisfy constraints at each epoch with probability 1.
We propose a model-free algorithm that converts PCMDP problem to an unconstrained problem and a Q-learning based approach is applied.
arXiv Detail & Related papers (2020-03-11T23:23:29Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z) - Naive Exploration is Optimal for Online LQR [49.681825576239355]
We show that the optimal regret scales as $widetildeTheta(sqrtd_mathbfu2 d_mathbfx T)$, where $T$ is the number of time steps, $d_mathbfu$ is the dimension of the input space, and $d_mathbfx$ is the dimension of the system state.
Our lower bounds rule out the possibility of a $mathrmpoly(logT)$-regret algorithm, which had been
arXiv Detail & Related papers (2020-01-27T03:44:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.