論文の概要: Instruct-Video2Avatar: Video-to-Avatar Generation with Instructions
- arxiv url: http://arxiv.org/abs/2306.02903v1
- Date: Mon, 5 Jun 2023 14:10:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 14:32:40.127587
- Title: Instruct-Video2Avatar: Video-to-Avatar Generation with Instructions
- Title(参考訳): Instruct-Video2Avatar:インストラクション付きビデオ-アバター生成
- Authors: Shaoxu Li
- Abstract要約: 短い単眼のRGBビデオとテキストの命令が与えられた場合、画像条件の拡散モデルを用いて1つのヘッドイメージを編集する。
提案手法は, 変形可能なニューラルラディアンスフィールドヘッド合成法を用いて, 光リアルアニマタブルな3次元ニューラルヘッドアバターを合成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for synthesizing edited photo-realistic digital avatars
with text instructions. Given a short monocular RGB video and text
instructions, our method uses an image-conditioned diffusion model to edit one
head image and uses the video stylization method to accomplish the editing of
other head images. Through iterative training and update (three times or more),
our method synthesizes edited photo-realistic animatable 3D neural head avatars
with a deformable neural radiance field head synthesis method. In quantitative
and qualitative studies on various subjects, our method outperforms
state-of-the-art methods.
- Abstract(参考訳): 本稿では,テキスト指示による編集されたフォトリアリスティックディジタルアバターの合成手法を提案する。
短い単眼rgbビデオとテキスト命令を与えられた場合,1つの頭部画像の編集には画像条件拡散モデルを使用し,他の頭部画像の編集にはビデオスタイライゼーション法を用いる。
反復的なトレーニングと更新(3回以上)により、編集されたフォトリアリスティックな3dニューラルヘッドアバターを変形可能なニューラルラミアンスフィールドヘッド合成法で合成する。
様々な対象の定量的・定性的研究において,本手法は最先端手法を上回っている。
関連論文リスト
- Unified Editing of Panorama, 3D Scenes, and Videos Through Disentangled Self-Attention Injection [60.47731445033151]
本稿では,基本的な2次元画像テキスト・ツー・イメージ(T2I)拡散モデルのみを利用して,両手法の長所を結合した新しい統合編集フレームワークを提案する。
実験結果から,3次元シーン,ビデオ,パノラマ画像など,様々なモダリティの編集が可能であることが確認された。
論文 参考訳(メタデータ) (2024-05-27T04:44:36Z) - GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image [89.70322127648349]
本稿では,多種多様な3DMM駆動ヘッドアバターに適用可能な汎用的なアバター編集手法を提案する。
この目的を達成するために、単一の画像から一貫した3D修正フィールドへのリフト2D編集を可能にする新しい表現対応修正生成モデルを設計する。
論文 参考訳(メタデータ) (2024-04-02T17:58:35Z) - Text-Guided Generation and Editing of Compositional 3D Avatars [59.584042376006316]
私たちのゴールは、テキスト記述だけで髪とアクセサリーを備えたリアルな3D顔アバターを作ることです。
既存の方法はリアリズムを欠いているか、非現実的な形状を作り出すか、編集をサポートしていないかのいずれかである。
論文 参考訳(メタデータ) (2023-09-13T17:59:56Z) - OPHAvatars: One-shot Photo-realistic Head Avatars [0.0]
ポートレートが与えられた場合、駆動キーポイント機能を用いて、粗い音声ヘッドビデオを合成する。
粗いアバターのレンダリング画像を用いて,低画質の画像をブラインド顔復元モデルで更新する。
数回繰り返して、本手法は光リアルなアニマタブルな3Dニューラルヘッドアバターを合成することができる。
論文 参考訳(メタデータ) (2023-07-18T11:24:42Z) - AvatarBooth: High-Quality and Customizable 3D Human Avatar Generation [14.062402203105712]
AvatarBoothはテキストプロンプトや特定の画像を使って高品質な3Dアバターを生成する新しい方法である。
我々の重要な貢献は、二重微調整拡散モデルを用いた正確なアバター生成制御である。
本稿では,3次元アバター生成の粗大な監視を容易にするマルチレゾリューションレンダリング戦略を提案する。
論文 参考訳(メタデータ) (2023-06-16T14:18:51Z) - HeadSculpt: Crafting 3D Head Avatars with Text [143.14548696613886]
テキストプロンプトから3Dヘッドアバターを作るために,HeadSculptという多用途パイプラインを導入した。
まずランドマークに基づく制御と学習されたテキスト埋め込みを活用することで,3次元認識による拡散モデルを構築した。
テクスチャメッシュを高分解能な微分可能なレンダリング技術で最適化するための,新しいアイデンティティ対応編集スコア蒸留手法を提案する。
論文 参考訳(メタデータ) (2023-06-05T16:53:58Z) - AvatarStudio: Text-driven Editing of 3D Dynamic Human Head Avatars [84.85009267371218]
本研究では,動的なフルヘッドアバターの外観を編集するテキストベースのAvatarStudioを提案する。
提案手法は,ニューラルフィールド(NeRF)を用いて人間の頭部のダイナミックなパフォーマンスを捉え,テキスト・ツー・イメージ拡散モデルを用いてこの表現を編集する。
提案手法は,全頭部を標準空間で編集し,事前学習した変形ネットワークを介して残時間ステップに伝達する。
論文 参考訳(メタデータ) (2023-06-01T11:06:01Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
モノクロビデオから暗黙の頭部アバターを学習するための新しい手法であるIMavatarを提案する。
従来の3DMMによるきめ細かい制御機構に着想を得て, 学習用ブレンドサップとスキンフィールドによる表現・ポーズ関連変形を表現した。
本手法は,最先端の手法と比較して,幾何性を改善し,より完全な表現空間をカバーできることを定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2021-12-14T15:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。