INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse
Problems
- URL: http://arxiv.org/abs/2306.02949v1
- Date: Mon, 5 Jun 2023 15:14:47 GMT
- Title: INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse
Problems
- Authors: Di You, Andreas Floros, Pier Luigi Dragotti
- Abstract summary: We propose a method that combines invertible neural networks (INN) and diffusion models for general inverse problems.
Specifically, we train the forward process of INN to simulate an arbitrary degradation process and use the inverse as a reconstruction process.
Our algorithm effectively estimates the details lost in the degradation process and is no longer limited by the requirement of knowing the closed-form expression of the degradation model.
- Score: 31.693710075183844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently it has been shown that using diffusion models for inverse problems
can lead to remarkable results. However, these approaches require a closed-form
expression of the degradation model and can not support complex degradations.
To overcome this limitation, we propose a method (INDigo) that combines
invertible neural networks (INN) and diffusion models for general inverse
problems. Specifically, we train the forward process of INN to simulate an
arbitrary degradation process and use the inverse as a reconstruction process.
During the diffusion sampling process, we impose an additional data-consistency
step that minimizes the distance between the intermediate result and the
INN-optimized result at every iteration, where the INN-optimized image is
composed of the coarse information given by the observed degraded image and the
details generated by the diffusion process. With the help of INN, our algorithm
effectively estimates the details lost in the degradation process and is no
longer limited by the requirement of knowing the closed-form expression of the
degradation model. Experiments demonstrate that our algorithm obtains
competitive results compared with recently leading methods both quantitatively
and visually. Moreover, our algorithm performs well on more complex degradation
models and real-world low-quality images.
Related papers
- Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling [16.683393726483978]
Diffusion models can generate a variety of high-quality images by modeling complex data distributions.
Most of the existing diffusion-based methods integrate data consistency steps within the diffusion reverse sampling process.
We show that the existing approximations are either insufficient or computationally inefficient.
arXiv Detail & Related papers (2024-09-13T15:20:03Z) - Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.
Our method treats the time dimension of a video as the batch dimension image diffusion models.
We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Inverse Problems with Diffusion Models: A MAP Estimation Perspective [5.002087490888723]
In Computer, several image restoration tasks such as inpainting, deblurring, and super-resolution can be formally modeled as inverse problems.
We propose a MAP estimation framework to model the reverse conditional generation process of a continuous time diffusion model.
We use our proposed framework to develop effective algorithms for image restoration.
arXiv Detail & Related papers (2024-07-27T15:41:13Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
Training diffusion models in the pixel space are both data-intensive and computationally demanding.
Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges.
We propose textitReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models.
arXiv Detail & Related papers (2023-07-16T18:42:01Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Deep unfolding as iterative regularization for imaging inverse problems [6.485466095579992]
Deep unfolding methods guide the design of deep neural networks (DNNs) through iterative algorithms.
We prove that the unfolded DNN will converge to it stably.
We demonstrate with an example of MRI reconstruction that the proposed method outperforms conventional unfolding methods.
arXiv Detail & Related papers (2022-11-24T07:38:47Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.