INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration
- URL: http://arxiv.org/abs/2501.14014v1
- Date: Thu, 23 Jan 2025 18:51:52 GMT
- Title: INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration
- Authors: Di You, Pier Luigi Dragotti,
- Abstract summary: We propose a novel INN-guided probabilistic diffusion algorithm for non-blind and blind image restoration.
INDIGO and BlindINDIGO combine the merits of the perfect reconstruction property of invertible neural networks (INN) with the strong generative capabilities of pre-trained diffusion models.
- Score: 22.19661915697775
- License:
- Abstract: Generative diffusion models are becoming one of the most popular prior in image restoration (IR) tasks due to their remarkable ability to generate realistic natural images. Despite achieving satisfactory results, IR methods based on diffusion models present several limitations. First of all, most non-blind approaches require an analytical expression of the degradation model to guide the sampling process. Secondly, most existing blind approaches rely on families of pre-defined degradation models for training their deep networks. The above issues limit the flexibility of these approaches and so their ability to handle real-world degradation tasks. In this paper, we propose a novel INN-guided probabilistic diffusion algorithm for non-blind and blind image restoration, namely INDIGO and BlindINDIGO, which combines the merits of the perfect reconstruction property of invertible neural networks (INN) with the strong generative capabilities of pre-trained diffusion models. Specifically, we train the forward process of the INN to simulate an arbitrary degradation process and use the inverse to obtain an intermediate image that we use to guide the reverse diffusion sampling process through a gradient step. We also introduce an initialization strategy, to further improve the performance and inference speed of our algorithm. Experiments demonstrate that our algorithm obtains competitive results compared with recently leading methods both quantitatively and visually on synthetic and real-world low-quality images.
Related papers
- Bi-LORA: A Vision-Language Approach for Synthetic Image Detection [14.448350657613364]
Deep image synthesis techniques, such as generative adversarial networks (GANs) and diffusion models (DMs) have ushered in an era of generating highly realistic images.
This paper takes inspiration from the potent convergence capabilities between vision and language, coupled with the zero-shot nature of vision-language models (VLMs)
We introduce an innovative method called Bi-LORA that leverages VLMs, combined with low-rank adaptation (LORA) tuning techniques, to enhance the precision of synthetic image detection for unseen model-generated images.
arXiv Detail & Related papers (2024-04-02T13:54:22Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse
Problems [31.693710075183844]
We propose a method that combines invertible neural networks (INN) and diffusion models for general inverse problems.
Specifically, we train the forward process of INN to simulate an arbitrary degradation process and use the inverse as a reconstruction process.
Our algorithm effectively estimates the details lost in the degradation process and is no longer limited by the requirement of knowing the closed-form expression of the degradation model.
arXiv Detail & Related papers (2023-06-05T15:14:47Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.