Best of Both Worlds: Hybrid SNN-ANN Architecture for Event-based Optical Flow Estimation
- URL: http://arxiv.org/abs/2306.02960v2
- Date: Tue, 19 Mar 2024 17:35:51 GMT
- Title: Best of Both Worlds: Hybrid SNN-ANN Architecture for Event-based Optical Flow Estimation
- Authors: Shubham Negi, Deepika Sharma, Adarsh Kumar Kosta, Kaushik Roy,
- Abstract summary: Spiking Neural Networks (SNNs) with their asynchronous event-driven compute show great potential for extracting features from event streams.
We propose a novel SNN-ANN hybrid architecture that combines the strengths of both.
- Score: 12.611797572621398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of robotics, event-based cameras are emerging as a promising low-power alternative to traditional frame-based cameras for capturing high-speed motion and high dynamic range scenes. This is due to their sparse and asynchronous event outputs. Spiking Neural Networks (SNNs) with their asynchronous event-driven compute, show great potential for extracting the spatio-temporal features from these event streams. In contrast, the standard Analog Neural Networks (ANNs) fail to process event data effectively. However, training SNNs is difficult due to additional trainable parameters (thresholds and leaks), vanishing spikes at deeper layers, and a non-differentiable binary activation function. Furthermore, an additional data structure, membrane potential, responsible for keeping track of temporal information, must be fetched and updated at every timestep in SNNs. To overcome these challenges, we propose a novel SNN-ANN hybrid architecture that combines the strengths of both. Specifically, we leverage the asynchronous compute capabilities of SNN layers to effectively extract the input temporal information. Concurrently, the ANN layers facilitate training and efficient hardware deployment on traditional machine learning hardware such as GPUs. We provide extensive experimental analysis for assigning each layer to be spiking or analog, leading to a network configuration optimized for performance and ease of training. We evaluate our hybrid architecture for optical flow estimation on DSEC-flow and Multi-Vehicle Stereo Event-Camera (MVSEC) datasets. On the DSEC-flow dataset, the hybrid SNN-ANN architecture achieves a 40% reduction in average endpoint error (AEE) with 22% lower energy consumption compared to Full-SNN, and 48% lower AEE compared to Full-ANN, while maintaining comparable energy usage.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal Attention [2.5075774828443467]
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for object detection tasks.
While Spiking Neural Networks (SNNs) are a natural match for event-based sensory data, Artificial Neural Networks (ANNs) tend to display more stable training dynamics.
We introduce the first Hybrid Attention-based SNN-ANN backbone for object detection using event cameras.
arXiv Detail & Related papers (2024-03-15T10:28:31Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for
Benchmarking Spiking Neural Networks [4.0300632886917]
SpikeSim is a tool that can perform realistic performance, energy, latency and area evaluation of IMC-mapped SNNs.
We propose SNN topological modifications leading to 1.24x and 10x reduction in the neuronal module's area and the overall energy-delay-product value.
arXiv Detail & Related papers (2022-10-24T01:07:17Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient
Hybrid Neural Networks [40.44712305614071]
We present Spike-FlowNet, a deep hybrid neural network architecture integrating SNNs and ANNs for efficiently estimating optical flow from sparse event camera outputs.
The network is end-to-end trained with self-supervised learning on Multi-Vehicle Stereo Event Camera (MVSEC) dataset.
arXiv Detail & Related papers (2020-03-14T20:37:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.