Transferring Annotator- and Instance-dependent Transition Matrix for Learning from Crowds
- URL: http://arxiv.org/abs/2306.03116v3
- Date: Sun, 14 Apr 2024 11:08:27 GMT
- Title: Transferring Annotator- and Instance-dependent Transition Matrix for Learning from Crowds
- Authors: Shikun Li, Xiaobo Xia, Jiankang Deng, Shiming Ge, Tongliang Liu,
- Abstract summary: In real-world crowd-sourcing scenarios, noise transition matrices are both annotator- and instance-dependent.
We first model the mixture of noise patterns by all annotators, and then transfer this modeling to individual annotators.
Experiments confirm the superiority of the proposed approach on synthetic and real-world crowd-sourcing data.
- Score: 88.06545572893455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from crowds describes that the annotations of training data are obtained with crowd-sourcing services. Multiple annotators each complete their own small part of the annotations, where labeling mistakes that depend on annotators occur frequently. Modeling the label-noise generation process by the noise transition matrix is a power tool to tackle the label noise. In real-world crowd-sourcing scenarios, noise transition matrices are both annotator- and instance-dependent. However, due to the high complexity of annotator- and instance-dependent transition matrices (AIDTM), annotation sparsity, which means each annotator only labels a little part of instances, makes modeling AIDTM very challenging. Prior works simplify the problem by assuming the transition matrix is instance-independent or using simple parametric ways, which lose modeling generality. Motivated by this, we target a more realistic problem, estimating general AIDTM in practice. Without losing modeling generality, we parameterize AIDTM with deep neural networks. To alleviate the modeling challenge, we suppose every annotator shares its noise pattern with similar annotators, and estimate AIDTM via knowledge transfer. We hence first model the mixture of noise patterns by all annotators, and then transfer this modeling to individual annotators. Furthermore, considering that the transfer from the mixture of noise patterns to individuals may cause two annotators with highly different noise generations to perturb each other, we employ the knowledge transfer between identified neighboring annotators to calibrate the modeling. Theoretical analyses are derived to demonstrate that both the knowledge transfer from global to individuals and the knowledge transfer between neighboring individuals can help model general AIDTM. Experiments confirm the superiority of the proposed approach on synthetic and real-world crowd-sourcing data.
Related papers
- Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - Federated Learning with Instance-Dependent Noisy Label [6.093214616626228]
FedBeat aims to build a global statistically consistent classifier using the IDN transition matrix (IDNTM)
Experiments conducted on CIFAR-10 and SVHN verify that the proposed method significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-16T05:08:02Z) - Learning Noise-Robust Joint Representation for Multimodal Emotion Recognition under Incomplete Data Scenarios [23.43319138048058]
Multimodal emotion recognition (MER) in practical scenarios is significantly challenged by the presence of missing or incomplete data.
Traditional methods have often involved discarding data or substituting data segments with zero vectors to approximate these incompletenesses.
We introduce a novel noise-robust MER model that effectively learns robust multimodal joint representations from noisy data.
arXiv Detail & Related papers (2023-09-21T10:49:02Z) - Decoupled Multi-task Learning with Cyclical Self-Regulation for Face
Parsing [71.19528222206088]
We propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation for face parsing.
Specifically, DML-CSR designs a multi-task model which comprises face parsing, binary edge, and category edge detection.
Our method achieves the new state-of-the-art performance on the Helen, CelebA-HQ, and LapaMask datasets.
arXiv Detail & Related papers (2022-03-28T02:12:30Z) - Disjoint Contrastive Regression Learning for Multi-Sourced Annotations [10.159313152511919]
Large-scale datasets are important for the development of deep learning models.
Multiple annotators may be employed to label different subsets of the data.
The inconsistency and bias among different annotators are harmful to the model training.
arXiv Detail & Related papers (2021-12-31T12:39:04Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
Machine perception models are typically modality-specific and optimised for unimodal benchmarks.
We introduce a novel transformer based architecture that uses fusion' for modality fusion at multiple layers.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks.
arXiv Detail & Related papers (2021-06-30T22:44:12Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Learning from Crowds by Modeling Common Confusions [33.92690297826468]
Crowdsourcing provides a practical way to obtain large amounts of labeled data at a low cost.
However, the annotation quality of annotators varies considerably.
We provide a new perspective to decompose annotation noise into common noise and individual noise.
arXiv Detail & Related papers (2020-12-24T01:13:23Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations.
In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system.
We propose a novel meta-learning framework that explicitly learns to generate noise to improve the model's robustness against multiple types of attacks.
arXiv Detail & Related papers (2020-06-22T10:44:05Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.