Confidence-based federated distillation for vision-based lane-centering
- URL: http://arxiv.org/abs/2306.03222v1
- Date: Mon, 5 Jun 2023 20:16:19 GMT
- Title: Confidence-based federated distillation for vision-based lane-centering
- Authors: Yitao Chen, Dawei Chen, Haoxin Wang, Kyungtae Han, Ming Zhao
- Abstract summary: This paper presents a new confidence-based federated distillation method to improve the performance of machine learning for steering angle prediction.
A comprehensive evaluation of vision-based lane centering shows that the proposed approach can outperform FedAvg and FedDF by 11.3% and 9%, respectively.
- Score: 4.071859628309787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental challenge of autonomous driving is maintaining the vehicle in
the center of the lane by adjusting the steering angle. Recent advances
leverage deep neural networks to predict steering decisions directly from
images captured by the car cameras. Machine learning-based steering angle
prediction needs to consider the vehicle's limitation in uploading large
amounts of potentially private data for model training. Federated learning can
address these constraints by enabling multiple vehicles to collaboratively
train a global model without sharing their private data, but it is difficult to
achieve good accuracy as the data distribution is often non-i.i.d. across the
vehicles. This paper presents a new confidence-based federated distillation
method to improve the performance of federated learning for steering angle
prediction. Specifically, it proposes the novel use of entropy to determine the
predictive confidence of each local model, and then selects the most confident
local model as the teacher to guide the learning of the global model. A
comprehensive evaluation of vision-based lane centering shows that the proposed
approach can outperform FedAvg and FedDF by 11.3% and 9%, respectively.
Related papers
- FedRAV: Hierarchically Federated Region-Learning for Traffic Object Classification of Autonomous Vehicles [7.8896851741869085]
We propose a novel hierarchically Federated Region-learning framework of Autonomous Vehicles (FedRAV)
FedRAV adaptively divides a large area containing vehicles into sub-regions based on the defined region-wise distance, and achieves personalized vehicular models and regional models.
Experiment results demonstrate that our framework outperforms those known algorithms, and improves the accuracy by at least 3.69%.
arXiv Detail & Related papers (2024-11-21T09:45:55Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Automatic AI controller that can drive with confidence: steering vehicle with uncertainty knowledge [3.131134048419781]
This research focuses on the development of a vehicle's lateral control system using a machine learning framework.
We employ a Bayesian Neural Network (BNN), a probabilistic learning model, to address uncertainty quantification.
By establishing a confidence threshold, we can trigger manual intervention, ensuring that control is relinquished from the algorithm when it operates outside of safe parameters.
arXiv Detail & Related papers (2024-04-24T23:22:37Z) - FedDriveScore: Federated Scoring Driving Behavior with a Mixture of
Metric Distributions [6.195950768412144]
Vehicle-cloud collaboration is proposed as a privacy-friendly alternative to centralized learning.
This framework includes a consistently federated version of the scoring method to reduce the performance degradation of the global scoring model.
arXiv Detail & Related papers (2024-01-13T02:15:41Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Is my Driver Observation Model Overconfident? Input-guided Calibration
Networks for Reliable and Interpretable Confidence Estimates [23.449073032842076]
Driver observation models are rarely deployed under perfect conditions.
We show that raw neural network-based approaches tend to significantly overestimate their prediction quality.
We introduce Calibrated Action Recognition with Input Guidance (CARING)-a novel approach leveraging an additional neural network to learn scaling the confidences depending on the video representation.
arXiv Detail & Related papers (2022-04-10T12:43:58Z) - Deep Federated Learning for Autonomous Driving [15.514129425191266]
We present a new approach to learn autonomous driving policy while respecting privacy concerns.
We propose a peer-to-peer Deep Federated Learning (DFL) approach to train deep architectures in a fully decentralized manner.
We design a new Federated Autonomous Driving network (FADNet) that can improve the model stability, ensure convergence, and handle imbalanced data distribution problems.
arXiv Detail & Related papers (2021-10-12T06:04:27Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.