FedRAV: Hierarchically Federated Region-Learning for Traffic Object Classification of Autonomous Vehicles
- URL: http://arxiv.org/abs/2411.13979v1
- Date: Thu, 21 Nov 2024 09:45:55 GMT
- Title: FedRAV: Hierarchically Federated Region-Learning for Traffic Object Classification of Autonomous Vehicles
- Authors: Yijun Zhai, Pengzhan Zhou, Yuepeng He, Fang Qu, Zhida Qin, Xianlong Jiao, Guiyan Liu, Songtao Guo,
- Abstract summary: We propose a novel hierarchically Federated Region-learning framework of Autonomous Vehicles (FedRAV)
FedRAV adaptively divides a large area containing vehicles into sub-regions based on the defined region-wise distance, and achieves personalized vehicular models and regional models.
Experiment results demonstrate that our framework outperforms those known algorithms, and improves the accuracy by at least 3.69%.
- Score: 7.8896851741869085
- License:
- Abstract: The emerging federated learning enables distributed autonomous vehicles to train equipped deep learning models collaboratively without exposing their raw data, providing great potential for utilizing explosively growing autonomous driving data. However, considering the complicated traffic environments and driving scenarios, deploying federated learning for autonomous vehicles is inevitably challenged by non-independent and identically distributed (Non-IID) data of vehicles, which may lead to failed convergence and low training accuracy. In this paper, we propose a novel hierarchically Federated Region-learning framework of Autonomous Vehicles (FedRAV), a two-stage framework, which adaptively divides a large area containing vehicles into sub-regions based on the defined region-wise distance, and achieves personalized vehicular models and regional models. This approach ensures that the personalized vehicular model adopts the beneficial models while discarding the unprofitable ones. We validate our FedRAV framework against existing federated learning algorithms on three real-world autonomous driving datasets in various heterogeneous settings. The experiment results demonstrate that our framework outperforms those known algorithms, and improves the accuracy by at least 3.69%. The source code of FedRAV is available at: https://github.com/yjzhai-cs/FedRAV.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing [6.004901615052089]
Vehicular edge intelligence (VEI) is a promising paradigm for enabling future intelligent transportation systems.
Federated learning (FL) is one of the fundamental technologies facilitating collaborative model training locally and aggregation.
We develop an Adaptive Split Federated Learning scheme for Vehicular Edge Computing (ASFV)
arXiv Detail & Related papers (2024-05-29T02:34:38Z) - VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning [2.6322811557798746]
vehicular radio environment map federated learning (VREM-FL) is proposed.
It combines mobility of vehicles with 5G radio environment maps.
VREM-FL can be tuned to trade training time for radio resource usage.
arXiv Detail & Related papers (2023-11-30T17:38:54Z) - Learning to Drive Anywhere [38.547150940396904]
We propose AnyD, a single geographically-aware conditional imitation learning model.
Our key insight is to introduce a high-capacity geo-location-based channel attention mechanism.
Our proposed approach can efficiently scale across inherently imbalanced data distributions and location-dependent events.
arXiv Detail & Related papers (2023-09-21T17:55:36Z) - Confidence-based federated distillation for vision-based lane-centering [4.071859628309787]
This paper presents a new confidence-based federated distillation method to improve the performance of machine learning for steering angle prediction.
A comprehensive evaluation of vision-based lane centering shows that the proposed approach can outperform FedAvg and FedDF by 11.3% and 9%, respectively.
arXiv Detail & Related papers (2023-06-05T20:16:19Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Federated Learning Framework Coping with Hierarchical Heterogeneity in
Cooperative ITS [10.087704332539161]
We introduce a federated learning framework coping with Hierarchical Heterogeneity (H2-Fed)
The framework exploits data from connected public traffic agents in vehicular networks without affecting user data privacy.
arXiv Detail & Related papers (2022-04-01T05:33:54Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
We propose to build a large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets.
We design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet.
We achieve the state-of-art accuracy of 86.07% mAP on the private test set of AICity Challenge.
arXiv Detail & Related papers (2020-04-14T05:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.