CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving
- URL: http://arxiv.org/abs/2503.00783v1
- Date: Sun, 02 Mar 2025 08:19:02 GMT
- Title: CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving
- Authors: Elahe Delavari, Aws Khalil, Jaerock Kwon,
- Abstract summary: End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving.<n>Traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization.<n>We introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving by learning control commands directly from expert demonstrations. However, traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization. This limitation makes it challenging to quantify the reliability of predicted actions and apply corrections when necessary. In this work, we introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning. The regression head predicts continuous driving actions, while the classification head estimates confidence, enabling a correction mechanism that adjusts actions in low-confidence scenarios, enhancing driving stability. We evaluate our approach in a closed-loop setting within the CARLA simulator, demonstrating its ability to detect uncertain actions, estimate confidence, and apply real-time corrections. Experimental results show that our method reduces lane deviation and improves trajectory accuracy by up to 50%, outperforming conventional regression-only models. These findings highlight the potential of classification-guided confidence estimation in enhancing the robustness of vision-based imitation learning for autonomous driving. The source code is available at https://github.com/ElaheDlv/Confidence_Aware_IL.
Related papers
- ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning [26.369237406972577]
Vision-centric semantic occupancy prediction plays a crucial role in autonomous driving.
There is still few research effort to explore the reliability in predicting semantic occupancy from camera.
We propose ReliOcc, a method designed to enhance the reliability of camera-based occupancy networks.
arXiv Detail & Related papers (2024-09-26T16:33:16Z) - Automatic AI controller that can drive with confidence: steering vehicle with uncertainty knowledge [3.131134048419781]
This research focuses on the development of a vehicle's lateral control system using a machine learning framework.
We employ a Bayesian Neural Network (BNN), a probabilistic learning model, to address uncertainty quantification.
By establishing a confidence threshold, we can trigger manual intervention, ensuring that control is relinquished from the algorithm when it operates outside of safe parameters.
arXiv Detail & Related papers (2024-04-24T23:22:37Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - Calibrating Multimodal Learning [94.65232214643436]
We propose a novel regularization technique, i.e., Calibrating Multimodal Learning (CML) regularization, to calibrate the predictive confidence of previous methods.
This technique could be flexibly equipped by existing models and improve the performance in terms of confidence calibration, classification accuracy, and model robustness.
arXiv Detail & Related papers (2023-06-02T04:29:57Z) - Is my Driver Observation Model Overconfident? Input-guided Calibration
Networks for Reliable and Interpretable Confidence Estimates [23.449073032842076]
Driver observation models are rarely deployed under perfect conditions.
We show that raw neural network-based approaches tend to significantly overestimate their prediction quality.
We introduce Calibrated Action Recognition with Input Guidance (CARING)-a novel approach leveraging an additional neural network to learn scaling the confidences depending on the video representation.
arXiv Detail & Related papers (2022-04-10T12:43:58Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
We present the first study of how welthe confidence values of modern action recognition architectures indeed reflect the probability of the correct outcome.
We introduce a new approach which learns to transform the model output into realistic confidence estimates through an additional calibration network.
arXiv Detail & Related papers (2021-01-02T15:41:21Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
Positive-confidence (Pconf) classification is a promising weakly-supervised learning method.
In practice, the confidence may be skewed by bias arising in an annotation process.
We introduce the parameterized model of the skewed confidence, and propose the method for selecting the hyper parameter.
arXiv Detail & Related papers (2020-01-29T00:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.