論文の概要: Statistical Inference Under Constrained Selection Bias
- arxiv url: http://arxiv.org/abs/2306.03302v3
- Date: Sat, 4 Nov 2023 16:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 22:17:36.259059
- Title: Statistical Inference Under Constrained Selection Bias
- Title(参考訳): 制限付き選択バイアスによる統計的推測
- Authors: Santiago Cortes-Gomez, Mateo Dulce, Carlos Patino, Bryan Wilder
- Abstract要約: 本稿では,選択バイアスが存在する場合の統計的推測を可能にする枠組みを提案する。
出力は、目標分布に対する推定値に対する高確率境界である。
我々はこれらの境界を推定するための手法の計算的および統計的特性を分析し、これらの手法が様々なシミュレートされた半合成的なタスクに対して情報的境界を生成可能であることを示す。
- 参考スコア(独自算出の注目度): 20.862583584531322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale datasets are increasingly being used to inform decision making.
While this effort aims to ground policy in real-world evidence, challenges have
arisen as selection bias and other forms of distribution shifts often plague
observational data. Previous attempts to provide robust inference have given
guarantees depending on a user-specified amount of possible distribution shift
(e.g., the maximum KL divergence between the observed and target
distributions). However, decision makers will often have additional knowledge
about the target distribution which constrains the kind of possible shifts. To
leverage such information, we propose a framework that enables statistical
inference in the presence of selection bias which obeys user-specified
constraints in the form of functions whose expectation is known under the
target distribution. The output is high-probability bounds on the value of an
estimand for the target distribution. Hence, our method leverages domain
knowledge in order to partially identify a wide class of estimands. We analyze
the computational and statistical properties of methods to estimate these
bounds and show that our method can produce informative bounds on a variety of
simulated and semisynthetic tasks, as well as in a real-world use case.
- Abstract(参考訳): 大規模なデータセットは、意思決定を知らせるためにますます使われています。
この取り組みは、現実世界の証拠にポリシーを基礎付けることを目的としているが、選択バイアスやその他の分布シフトが観察データに支障をきたすため、課題が発生する。
堅牢な推論を提供する以前の試みでは、ユーザが指定した分布シフトの量(例えば、観測された分布と対象分布の最大KLばらつき)に応じて保証が与えられていた。
しかしながら、意思決定者は、可能なシフトの種類を制限するターゲット分布に関する追加の知識を持つことが多い。
このような情報を活用するために,対象分布下で期待が知られている関数の形で,ユーザが特定した制約に従う選択バイアスの存在下で統計的推測を可能にする枠組みを提案する。
出力は、目標分布に対する推定値に対する高確率境界である。
そこで,本手法は,広い範囲の推定値を部分的に識別するために,ドメイン知識を活用する。
これらの境界を推定する手法の計算・統計特性を解析し,本手法が実世界のユースケースと同様に,様々なシミュレーションおよび半合成タスクにおいて情報的境界を生成できることを示す。
関連論文リスト
- Distributionally robust risk evaluation with an isotonic constraint [20.74502777102024]
分布的に堅牢な学習は、不確実な分布の集合内で最悪のケースの統計性能を制御することを目的としている。
本稿では,未知のターゲット分布が推定値と異なる方法に関する事前情報を組み込んだDRLの形状制約手法を提案する。
合成データと実データの両方に関する実証研究は、提案した形状制約手法の精度の向上を実証している。
論文 参考訳(メタデータ) (2024-07-09T13:56:34Z) - Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift [9.387706860375461]
分散シフトは、基礎となるデータ生成プロセスが変化したときに発生し、モデルの性能のずれにつながる。
予測間隔は、その基礎となる分布によって引き起こされる不確実性を特徴づける重要なツールとして機能する。
予測区間を集約し,最小の幅と対象領域を適切にカバーする手法を提案する。
論文 参考訳(メタデータ) (2024-05-16T17:55:42Z) - Distributional Counterfactual Explanations With Optimal Transport [7.597676579494146]
対実的説明 (CE) は、ブラックボックスの意思決定モデルに関する洞察を提供するための事実上の方法である。
本稿では,観測データの分布特性に焦点を移すDCE(distributal counterfactual explanation)を提案する。
論文 参考訳(メタデータ) (2024-01-23T21:48:52Z) - Probabilistic Test-Time Generalization by Variational Neighbor-Labeling [62.158807685159736]
本稿では、ドメインの一般化を試み、モデルが未確認のターゲットドメインにデプロイされる前に、ソースドメインにのみトレーニングされる。
ソーストレーニングされたモデルをテスト時にターゲットドメインに一般化するための、ターゲットサンプルの擬似ラベル化の確率。
より堅牢な擬似ラベルを生成するために、近隣のターゲットサンプルの情報を含む変分隣接ラベル。
論文 参考訳(メタデータ) (2023-07-08T18:58:08Z) - Inferential Moments of Uncertain Multivariable Systems [0.0]
我々はベイズ確率の更新をランダムなプロセスとして扱い、推論モーメントと呼ばれる結合確率分布の固有量的特徴を明らかにする。
推論モーメントは、まだ取得されていない情報に応じて、事前分布がどのように更新されるかについての形状情報を定量化する。
情報理論の要素と推論理論の関連性を示す推論モーメントの観点から,相互情報の時系列展開を求める。
論文 参考訳(メタデータ) (2023-05-03T00:56:12Z) - Data-Driven Approximations of Chance Constrained Programs in
Nonstationary Environments [3.126118485851773]
確率制約プログラムのサンプル平均近似(SAA)について検討する。
この問題の非定常変種を考えると、ランダムサンプルは逐次的に独立に描画されると仮定される。
本稿では,データ生成分布列と実確率制約分布との間のワッサーシュタイン距離の情報を利用した,ロバストなSAA手法を提案する。
論文 参考訳(メタデータ) (2022-05-08T01:01:57Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
トラリミー予測は将来の力学のマルチモーダルな性質を捉えるジレンマと対立する。
本研究では,パーソナライズされた動作パターンを予測するDisDisDis(Disdis)手法を提案する。
本手法は,プラグイン・アンド・プレイモジュールとして既存のマルチモーダル予測モデルと統合することができる。
論文 参考訳(メタデータ) (2021-07-29T17:42:12Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
ドメインシフトの下で校正された不確実性を学習するためのフレームワークを提案する。
特に、密度比推定は、ターゲット(テスト)サンプルの近さをソース(トレーニング)分布に反映する。
提案手法は下流タスクに有利な校正不確実性を生成する。
論文 参考訳(メタデータ) (2020-10-08T02:10:54Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
未知の真のターゲットラベルのプロキシとして、ドメイン不変の予測器のセットを使用します。
結果として生じるリスク見積の誤差は、プロキシモデルのターゲットリスクに依存する。
論文 参考訳(メタデータ) (2020-07-06T17:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。