論文の概要: Inferential Moments of Uncertain Multivariable Systems
- arxiv url: http://arxiv.org/abs/2305.01841v2
- Date: Fri, 17 Nov 2023 16:37:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 19:48:24.140014
- Title: Inferential Moments of Uncertain Multivariable Systems
- Title(参考訳): 不確定多変量系の予測モーメント
- Authors: Kevin Vanslette
- Abstract要約: 我々はベイズ確率の更新をランダムなプロセスとして扱い、推論モーメントと呼ばれる結合確率分布の固有量的特徴を明らかにする。
推論モーメントは、まだ取得されていない情報に応じて、事前分布がどのように更新されるかについての形状情報を定量化する。
情報理論の要素と推論理論の関連性を示す推論モーメントの観点から,相互情報の時系列展開を求める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article expands the framework of Bayesian inference and provides direct
probabilistic methods for approaching inference tasks that are typically
handled with information theory. We treat Bayesian probability updating as a
random process and uncover intrinsic quantitative features of joint probability
distributions called inferential moments. Inferential moments quantify shape
information about how a prior distribution is expected to update in response to
yet to be obtained information. Further, we quantify the unique probability
distribution whose statistical moments are the inferential moments in question.
We find a power series expansion of the mutual information in terms of
inferential moments, which implies a connection between inferential theoretic
logic and elements of information theory. Of particular interest is the
inferential deviation, which is the expected variation of the probability of
one variable in response to an inferential update of another. We explore two
applications that analyze the inferential deviations of a Bayesian network to
improve decision-making. We implement simple greedy algorithms for exploring
sensor tasking using inferential deviations that generally outperform similar
greedy mutual information algorithms in terms of root mean squared error
between epistemic probability estimates and the ground truth probabilities they
are estimating.
- Abstract(参考訳): 本稿ではベイズ推論の枠組みを拡張し、情報理論でよく扱われる推論タスクにアプローチするための直接確率的手法を提供する。
我々はベイズ確率の更新をランダムなプロセスとして扱い、推論モーメントと呼ばれる結合確率分布の固有量的特徴を明らかにする。
予測モーメント(inferential moments)は、未取得の情報に応答して、事前分布がどのように更新されるかの形状情報を定量化する。
さらに、統計的モーメントが問題となる推論モーメントであるユニークな確率分布を定量化する。
情報理論の要素と推論理論の関連性を示す推論モーメントの観点から,相互情報の時系列展開を求める。
特に興味深いのは推論偏差であり、これはある変数が他の変数の推論更新に応じて確率の変化を期待するものである。
ベイズネットワークの偏差を解析して意思決定を改善する2つのアプリケーションについて検討する。
提案手法は,認識確率推定値と推定する基底真理確率との間の根平均2乗誤差の点で,類似の欲求情報アルゴリズムを概ね上回っている推論偏差を用いてセンサタスクを探索する単純な欲求アルゴリズムを実装した。
関連論文リスト
- Intervention and Conditioning in Causal Bayesian Networks [23.225006087292765]
単純だが現実的な独立を仮定することで、介入公式の確率を推定できることを示す。
多くの場合、仮定が適切であれば、これらの確率推定は観測データを用いて評価することができる。
論文 参考訳(メタデータ) (2024-05-23T15:55:38Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - On the Properties and Estimation of Pointwise Mutual Information Profiles [49.877314063833296]
ポイントワイド相互情報プロファイル(ポイントワイド相互情報プロファイル、英: pointwise mutual information profile)は、与えられた確率変数のペアに対するポイントワイド相互情報の分布である。
そこで我々は,モンテカルロ法を用いて分布を正確に推定できる新しい分布系 Bend と Mix Models を導入する。
論文 参考訳(メタデータ) (2023-10-16T10:02:24Z) - Beyond Normal: On the Evaluation of Mutual Information Estimators [52.85079110699378]
そこで本研究では,既知の地道的相互情報を用いて,多種多様な分布群を構築する方法について述べる。
本稿では,問題の難易度に適応した適切な推定器の選択方法について,実践者のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2023-06-19T17:26:34Z) - Statistical Inference Under Constrained Selection Bias [20.862583584531322]
本稿では,選択バイアスが存在する場合の統計的推測を可能にする枠組みを提案する。
出力は、目標分布に対する推定値に対する高確率境界である。
我々はこれらの境界を推定するための手法の計算的および統計的特性を分析し、これらの手法が様々なシミュレートされた半合成的なタスクに対して情報的境界を生成可能であることを示す。
論文 参考訳(メタデータ) (2023-06-05T23:05:26Z) - A Bayesian Framework for Information-Theoretic Probing [51.98576673620385]
我々は、探索は相互情報を近似するものとみなすべきであると論じる。
これは、表現が元の文とターゲットタスクに関する全く同じ情報をエンコードしているというかなり直感的な結論を導いた。
本稿では,ベイズ的相互情報(Bayesian mutual information)と呼ぶものを測定するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-08T18:08:36Z) - Entropy, Information, and the Updating of Probabilities [0.0]
本稿では,推論の一般的な枠組みとして,最大エントロピー法に対する特定のアプローチを概説する。
ME法は1つの後部の単なる選択を越えているが、他の分布がどれだけ少ないかという問題にも対処する。
論文 参考訳(メタデータ) (2021-07-09T16:27:23Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits [18.740781076082044]
確率的推論の大規模クラスを扱うアプローチの背後にある独立性の仮定を克服する手法を提案する。
ベイズ学習のアルゴリズムは、完全な観察にもかかわらず、スパースから提供します。
そのような回路の各リーフは、不確実な確率を表すエレガントなフレームワークを提供するベータ分散ランダム変数でラベル付けされています。
論文 参考訳(メタデータ) (2021-02-22T10:03:15Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
連続確率変数間の相互情報を推定することは、高次元データにとってしばしば難解で困難である。
近年の進歩は、相互情報の変動的下界を最適化するためにニューラルネットワークを活用している。
提案手法は,データサンプルペアが結合分布から引き出される確率を提供する分類器の訓練に基づく。
論文 参考訳(メタデータ) (2020-10-05T04:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。