論文の概要: Origin-Destination Network Generation via Gravity-Guided GAN
- arxiv url: http://arxiv.org/abs/2306.03390v1
- Date: Tue, 6 Jun 2023 04:07:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 17:20:55.180239
- Title: Origin-Destination Network Generation via Gravity-Guided GAN
- Title(参考訳): 重力誘導GANによる原位置ネットワーク生成
- Authors: Can Rong, Huandong Wang, Yong Li
- Abstract要約: オリジン・デスティネーション(OD)の流れは、方向や体積を含む貴重な人口移動情報を含んでいる。
そこで本研究では,人口移動モデルを改善するために,Origin-Destination Generation Networks (ODGN) というモデルを構築することを提案する。
具体的には、まず、各地域の都市の特徴を捉えるための多視点グラフ注意ネットワーク(MGAT)を構築し、次に重力誘導予測器を用いて、2つの地域間のODフローを得る。
- 参考スコア(独自算出の注目度): 9.03056486066899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Origin-destination (OD) flow, which contains valuable population mobility
information including direction and volume, is critical in many urban
applications, such as urban planning, transportation management, etc. However,
OD data is not always easy to access due to high costs or privacy concerns.
Therefore, we must consider generating OD through mathematical models. Existing
works utilize physics laws or machine learning (ML) models to build the
association between urban structures and OD flows while these two kinds of
methods suffer from the limitation of over-simplicity and poor generalization
ability, respectively. In this paper, we propose to adopt physics-informed ML
paradigm, which couple the physics scientific knowledge and data-driven ML
methods, to construct a model named Origin-Destination Generation Networks
(ODGN) for better population mobility modeling by leveraging the complementary
strengths of combining physics and ML methods. Specifically, we first build a
Multi-view Graph Attention Networks (MGAT) to capture the urban features of
every region and then use a gravity-guided predictor to obtain OD flow between
every two regions. Furthermore, we use a conditional GAN training strategy and
design a sequence-based discriminator to consider the overall topological
features of OD as a network. Extensive experiments on real-world datasets have
been done to demonstrate the superiority of our proposed method compared with
baselines.
- Abstract(参考訳): 方向や容積を含む貴重な人口移動情報を含むOrigin-Detination (OD) フローは、都市計画や交通管理など、多くの都市用途において重要である。
しかし、ODデータは高コストやプライバシー上の懸念からアクセスしやすいとは限らない。
したがって,数理モデルによるODの生成を検討する必要がある。
既存の研究では、物理法則や機械学習(ml)モデルを用いて都市構造とodフローの関係を構築するが、これら2つの手法はそれぞれ単純化の限界と一般化能力の低さに苦しめられている。
本稿では,物理知識とデータ駆動型ML手法を組み合わせた物理インフォームMLパラダイムを採用し,物理とML手法を組み合わせた補完的強みを活用して,人口移動性モデリングを改善するために,Origin-Destination Generation Networks (ODGN) というモデルを構築することを提案する。
具体的には、まず、各地域の都市の特徴を捉えるための多視点グラフ注意ネットワーク(MGAT)を構築し、次に重力誘導予測器を用いて、2つの地域間のODフローを得る。
さらに,条件付きgan学習戦略を用いてシーケンスベース判別器を設計し,odの位相的特徴をネットワークとして考慮する。
提案手法がベースラインよりも優れていることを示すために,実世界のデータセットに関する広範な実験を行った。
関連論文リスト
- Harnessing LLMs for Cross-City OD Flow Prediction [5.6685153523382015]
大規模言語モデル(LLM)を用いた都市間原位置推定(OD)フロー予測の新しい手法を提案する。
我々のアプローチは,LLMの高度な意味理解と文脈学習能力を利用して,異なる特徴を持つ都市間のギャップを埋める。
我々の新しいフレームワークは、ソース都市からODトレーニングデータセットを収集し、LSMを指導し、ターゲット都市における宛先POIを予測し、予測された宛先POIに最も合う場所を特定する4つの主要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-09-05T23:04:28Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Complexity-aware Large Scale Origin-Destination Network Generation via
Diffusion Model [24.582615553841396]
Origin-Destination (OD) ネットワークは、市内の各地域から他の地域への人々の流れを推定する。
本稿では,ノードとエッジの条件付き結合確率分布を学習するために,ODネットワークの生成と拡散法の設計を提案する。
論文 参考訳(メタデータ) (2023-06-08T02:02:55Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Semantic-Fused Multi-Granularity Cross-City Traffic Prediction [17.020546413647708]
本研究では,異なる粒度で融合した意味を持つ都市間における知識伝達を実現するためのセマンティック・フューズド・マルチグラニュラリティ・トランスファー・ラーニング・モデルを提案する。
本稿では,静的な空間依存を保ちながら,様々な意味を融合する意味融合モジュールを設計する。
STLモデルの有効性を検証するため、6つの実世界のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-23T04:26:34Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
本稿では,道路網上の連続軌道を生成するために,新たな2段階生成対向フレームワークを提案する。
具体的には、A*アルゴリズムの人間の移動性仮説に基づいてジェネレータを構築し、人間の移動性について学習する。
判別器では, 逐次報酬と移動ヤウ報酬を組み合わせることで, 発電機の有効性を高める。
論文 参考訳(メタデータ) (2023-01-16T09:54:02Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Deep Gravity: enhancing mobility flows generation with deep neural
networks and geographic information [1.479639149658596]
既存のフロー生成ソリューションは主にメカニスティックなアプローチに基づいている。
フロー生成に有効な解として,多機能深層重力モデルを提案する。
本実験は, イングランドの通勤流を対象とした実験で, MFDGモデルが性能を著しく向上させることを示すものである。
論文 参考訳(メタデータ) (2020-12-01T13:49:46Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
インフラ・土地利用情報に基づく通勤フローの予測は都市計画・公共政策開発に不可欠である。
重力モデルのような従来のモデルは、主に物理原理から派生し、現実のシナリオにおける予測力によって制限される。
本研究では,空間的相関を空間的コンテキスト情報から捉えて,通勤フロー予測を行うモデルであるGeo-contextual Multitask Embedding Learner (GMEL)を提案する。
論文 参考訳(メタデータ) (2020-05-04T17:45:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。