Generate-then-Retrieve: Intent-Aware FAQ Retrieval in Product Search
- URL: http://arxiv.org/abs/2306.03411v1
- Date: Tue, 6 Jun 2023 05:18:21 GMT
- Title: Generate-then-Retrieve: Intent-Aware FAQ Retrieval in Product Search
- Authors: Zhiyu Chen, Jason Choi, Besnik Fetahu, Oleg Rokhlenko, Shervin Malmasi
- Abstract summary: Frequently Asked Question (FAQ) retrieval aims to retrieve common question-answer pairs for a user query with question intent.
Integrating FAQ retrieval in product search can not only empower users to make more informed purchase decisions, but also enhance user retention through efficient post-purchase support.
We propose an intent-aware FAQ retrieval system consisting of (1) an intent classifier that predicts when a user's information need can be answered by an FAQ; (2) a reformulation model that rewrites a query into a natural question.
- Score: 20.216161323866867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Customers interacting with product search engines are increasingly
formulating information-seeking queries. Frequently Asked Question (FAQ)
retrieval aims to retrieve common question-answer pairs for a user query with
question intent. Integrating FAQ retrieval in product search can not only
empower users to make more informed purchase decisions, but also enhance user
retention through efficient post-purchase support. Determining when an FAQ
entry can satisfy a user's information need within product search, without
disrupting their shopping experience, represents an important challenge. We
propose an intent-aware FAQ retrieval system consisting of (1) an intent
classifier that predicts when a user's information need can be answered by an
FAQ; (2) a reformulation model that rewrites a query into a natural question.
Offline evaluation demonstrates that our approach improves Hit@1 by 13% on
retrieving ground-truth FAQs, while reducing latency by 95% compared to
baseline systems. These improvements are further validated by real user
feedback, where 71% of displayed FAQs on top of product search results received
explicit positive user feedback. Overall, our findings show promising
directions for integrating FAQ retrieval into product search at scale.
Related papers
- Identifying High Consideration E-Commerce Search Queries [27.209699168631445]
We propose an Engagement-based Query Ranking (EQR) approach to identify High Consideration (HC) queries in e-commerce sites.
EQR prioritizes query-level features related to customer behavior, finance, and catalog information rather than popularity signals.
The model was commercially deployed, and shown to outperform human-selected queries in terms of downstream customer impact.
arXiv Detail & Related papers (2024-10-17T18:22:42Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
We present CLARINET, a system that asks informative clarification questions by choosing questions whose answers would maximize certainty in the correct candidate.
Our approach works by augmenting a large language model (LLM) to condition on a retrieval distribution, finetuning end-to-end to generate the question that would have maximized the rank of the true candidate at each turn.
arXiv Detail & Related papers (2024-04-28T18:21:31Z) - Identifying Shopping Intent in Product QA for Proactive Recommendations [25.30972312076997]
We focus on the domain of e-commerce, namely in identifying Shopping Product Questions (SPQs)
We propose features that capture the user's latent shopping behavior from their purchase history, and combine them using a novel Mixture-of-Experts (MoE) model.
We identify SPQs in real-time and recommend shopping actions to users to add the queried product into their shopping list.
arXiv Detail & Related papers (2024-04-09T04:55:24Z) - Estimating the Usefulness of Clarifying Questions and Answers for
Conversational Search [17.0363715044341]
We propose a method for processing answers to clarifying questions, moving away from previous work that simply appends answers to the original query.
Specifically, we propose a classifier for assessing usefulness of the prompted clarifying question and an answer given by the user.
Results demonstrate significant improvements over strong non-mixed-initiative baselines.
arXiv Detail & Related papers (2024-01-21T11:04:30Z) - Social Commonsense-Guided Search Query Generation for Open-Domain
Knowledge-Powered Conversations [66.16863141262506]
We present a novel approach that focuses on generating internet search queries guided by social commonsense.
Our proposed framework addresses passive user interactions by integrating topic tracking, commonsense response generation and instruction-driven query generation.
arXiv Detail & Related papers (2023-10-22T16:14:56Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Product Question Answering (PQA) on E-Commerce platforms has attracted increasing attention as it can act as an intelligent online shopping assistant.
It is insufficient to provide the same "completely summarized" answer to all customers, since many customers are more willing to see personalized answers with customized information only for themselves.
We propose a novel multi-perspective user preference model for generating personalized answers in PQA.
arXiv Detail & Related papers (2021-12-27T07:51:49Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
Recommendation reason generation plays a vital role in attracting customers' attention as well as improving user experience.
We propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users' interests.
Experimental results show that our model is superior to traditional generative models.
arXiv Detail & Related papers (2021-02-16T02:08:52Z) - An Empirical Study of Clarifying Question-Based Systems [15.767515065224016]
We conduct an online experiment by deploying an experimental system, which interacts with users by asking clarifying questions against a product repository.
We collect both implicit interaction behavior data and explicit feedback from users showing that: (a) users are willing to answer a good number of clarifying questions (11-21 on average), but not many more than that.
arXiv Detail & Related papers (2020-08-01T15:10:11Z) - Less is More: Rejecting Unreliable Reviews for Product Question
Answering [20.821416803824295]
Recent studies show that product reviews are a good source for real-time, automatic product question answering.
In this paper, we focus on the issue of answerability and answer reliability for PQA using reviews.
We propose a conformal prediction based framework to improve the reliability of PQA systems.
arXiv Detail & Related papers (2020-07-09T03:08:55Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
We introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers.
We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers.
arXiv Detail & Related papers (2020-05-22T19:39:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.