Identifying High Consideration E-Commerce Search Queries
- URL: http://arxiv.org/abs/2410.13951v1
- Date: Thu, 17 Oct 2024 18:22:42 GMT
- Title: Identifying High Consideration E-Commerce Search Queries
- Authors: Zhiyu Chen, Jason Choi, Besnik Fetahu, Shervin Malmasi,
- Abstract summary: We propose an Engagement-based Query Ranking (EQR) approach to identify High Consideration (HC) queries in e-commerce sites.
EQR prioritizes query-level features related to customer behavior, finance, and catalog information rather than popularity signals.
The model was commercially deployed, and shown to outperform human-selected queries in terms of downstream customer impact.
- Score: 27.209699168631445
- License:
- Abstract: In e-commerce, high consideration search missions typically require careful and elaborate decision making, and involve a substantial research investment from customers. We consider the task of identifying High Consideration (HC) queries. Identifying such queries enables e-commerce sites to better serve user needs using targeted experiences such as curated QA widgets that help users reach purchase decisions. We explore the task by proposing an Engagement-based Query Ranking (EQR) approach, focusing on query ranking to indicate potential engagement levels with query-related shopping knowledge content during product search. Unlike previous studies on predicting trends, EQR prioritizes query-level features related to customer behavior, finance, and catalog information rather than popularity signals. We introduce an accurate and scalable method for EQR and present experimental results demonstrating its effectiveness. Offline experiments show strong ranking performance. Human evaluation shows a precision of 96% for HC queries identified by our model. The model was commercially deployed, and shown to outperform human-selected queries in terms of downstream customer impact, as measured through engagement.
Related papers
- Centrality-aware Product Retrieval and Ranking [14.710718676076327]
This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries.
We curate samples from eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent.
We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search.
arXiv Detail & Related papers (2024-10-21T11:59:14Z) - Exploring Query Understanding for Amazon Product Search [62.53282527112405]
We study how query understanding-based ranking features influence the ranking process.
We propose a query understanding-based multi-task learning framework for ranking.
We present our studies and investigations using the real-world system on Amazon Search.
arXiv Detail & Related papers (2024-08-05T03:33:11Z) - ProductAgent: Benchmarking Conversational Product Search Agent with Asking Clarification Questions [68.81939215223818]
ProductAgent is a conversational information seeking agent equipped with abilities of strategic clarification question generation and dynamic product retrieval.
We develop the agent with strategies for product feature summarization, query generation, and product retrieval.
Experiments show that ProductAgent interacts positively with the user and enhances retrieval performance with increasing dialogue turns.
arXiv Detail & Related papers (2024-07-01T03:50:23Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
High relevance of retrieved and re-ranked items to the search query is the cornerstone of successful product search.
We present an array of techniques for leveraging Large Language Models (LLMs) for automating the relevance judgment of query-item pairs (QIPs) at scale.
Our findings have immediate implications for the growing field of relevance judgment automation in product search.
arXiv Detail & Related papers (2024-06-01T00:52:41Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
We propose a novel model called the Entity-Based Relevance Model (EBRM)
The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy.
We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance.
arXiv Detail & Related papers (2023-07-01T15:44:53Z) - Generate-then-Retrieve: Intent-Aware FAQ Retrieval in Product Search [20.216161323866867]
Frequently Asked Question (FAQ) retrieval aims to retrieve common question-answer pairs for a user query with question intent.
Integrating FAQ retrieval in product search can not only empower users to make more informed purchase decisions, but also enhance user retention through efficient post-purchase support.
We propose an intent-aware FAQ retrieval system consisting of (1) an intent classifier that predicts when a user's information need can be answered by an FAQ; (2) a reformulation model that rewrites a query into a natural question.
arXiv Detail & Related papers (2023-06-06T05:18:21Z) - Justification of Recommender Systems Results: A Service-based Approach [4.640835690336653]
We propose a novel justification approach that uses service models to extract experience data from reviews concerning all the stages of interaction with items.
In a user study, we compared our approach with baselines reflecting the state of the art in the justification of recommender systems results.
Our models received higher Interface Adequacy and Satisfaction evaluations by users having different levels of Curiosity or low Need for Cognition (NfC)
These findings encourage the adoption of service models to justify recommender systems results but suggest the investigation of personalization strategies to suit diverse interaction needs.
arXiv Detail & Related papers (2022-11-07T11:08:19Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - High Quality Related Search Query Suggestions using Deep Reinforcement
Learning [0.15229257192293202]
"High Quality Related Search Query Suggestions" task aims at recommending search queries which are real, accurate, diverse, relevant and engaging.
We train a Deep Reinforcement Learning model to predict the query a user would enter next.
The reward signal is composed of long-term session-based user feedback, syntactic relatedness and estimated naturalness of generated query.
arXiv Detail & Related papers (2021-08-10T05:22:32Z) - Mining Implicit Relevance Feedback from User Behavior for Web Question
Answering [92.45607094299181]
We make the first study to explore the correlation between user behavior and passage relevance.
Our approach significantly improves the accuracy of passage ranking without extra human labeled data.
In practice, this work has proved effective to substantially reduce the human labeling cost for the QA service in a global commercial search engine.
arXiv Detail & Related papers (2020-06-13T07:02:08Z) - Review-guided Helpful Answer Identification in E-commerce [38.276241153439955]
Product-specific community question answering platforms can greatly help address the concerns of potential customers.
The user-provided answers on such platforms often vary a lot in their qualities.
Helpfulness votes from the community can indicate the overall quality of the answer, but they are often missing.
arXiv Detail & Related papers (2020-03-13T11:34:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.