Identifying Shopping Intent in Product QA for Proactive Recommendations
- URL: http://arxiv.org/abs/2404.06017v1
- Date: Tue, 9 Apr 2024 04:55:24 GMT
- Title: Identifying Shopping Intent in Product QA for Proactive Recommendations
- Authors: Besnik Fetahu, Nachshon Cohen, Elad Haramaty, Liane Lewin-Eytan, Oleg Rokhlenko, Shervin Malmasi,
- Abstract summary: We focus on the domain of e-commerce, namely in identifying Shopping Product Questions (SPQs)
We propose features that capture the user's latent shopping behavior from their purchase history, and combine them using a novel Mixture-of-Experts (MoE) model.
We identify SPQs in real-time and recommend shopping actions to users to add the queried product into their shopping list.
- Score: 25.30972312076997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Voice assistants have become ubiquitous in smart devices allowing users to instantly access information via voice questions. While extensive research has been conducted in question answering for voice search, little attention has been paid on how to enable proactive recommendations from a voice assistant to its users. This is a highly challenging problem that often leads to user friction, mainly due to recommendations provided to the users at the wrong time. We focus on the domain of e-commerce, namely in identifying Shopping Product Questions (SPQs), where the user asking a product-related question may have an underlying shopping need. Identifying a user's shopping need allows voice assistants to enhance shopping experience by determining when to provide recommendations, such as product or deal recommendations, or proactive shopping actions recommendation. Identifying SPQs is a challenging problem and cannot be done from question text alone, and thus requires to infer latent user behavior patterns inferred from user's past shopping history. We propose features that capture the user's latent shopping behavior from their purchase history, and combine them using a novel Mixture-of-Experts (MoE) model. Our evaluation shows that the proposed approach is able to identify SPQs with a high score of F1=0.91. Furthermore, based on an online evaluation with real voice assistant users, we identify SPQs in real-time and recommend shopping actions to users to add the queried product into their shopping list. We demonstrate that we are able to accurately identify SPQs, as indicated by the significantly higher rate of added products to users' shopping lists when being prompted after SPQs vs random PQs.
Related papers
- Identifying High Consideration E-Commerce Search Queries [27.209699168631445]
We propose an Engagement-based Query Ranking (EQR) approach to identify High Consideration (HC) queries in e-commerce sites.
EQR prioritizes query-level features related to customer behavior, finance, and catalog information rather than popularity signals.
The model was commercially deployed, and shown to outperform human-selected queries in terms of downstream customer impact.
arXiv Detail & Related papers (2024-10-17T18:22:42Z) - Unlocking Markets: A Multilingual Benchmark to Cross-Market Question Answering [49.68194318431166]
Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users.
We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA)
We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages.
arXiv Detail & Related papers (2024-09-24T12:24:34Z) - Bridging the Gap Between Information Seeking and Product Search Systems: Q&A Recommendation for E-commerce [12.26798892996023]
We propose to recommend users Question-Answer (Q&A) pairs that are relevant to their product search and can help them make a purchase decision.
We highlight the challenges, open problems, and suggested solutions to encourage future research in this emerging area.
arXiv Detail & Related papers (2024-07-12T19:22:17Z) - ProductAgent: Benchmarking Conversational Product Search Agent with Asking Clarification Questions [68.81939215223818]
ProductAgent is a conversational information seeking agent equipped with abilities of strategic clarification question generation and dynamic product retrieval.
We develop the agent with strategies for product feature summarization, query generation, and product retrieval.
Experiments show that ProductAgent interacts positively with the user and enhances retrieval performance with increasing dialogue turns.
arXiv Detail & Related papers (2024-07-01T03:50:23Z) - Question Suggestion for Conversational Shopping Assistants Using Product Metadata [24.23400061359442]
We propose a framework that employs Large Language Models (LLMs) to automatically generate contextual, useful, answerable, fluent and diverse questions about products.
Suggesting these questions to customers as helpful suggestions or hints to both start and continue a conversation can result in a smoother and faster shopping experience.
arXiv Detail & Related papers (2024-05-02T21:16:19Z) - Instant Answering in E-Commerce Buyer-Seller Messaging using
Message-to-Question Reformulation [26.593137126739308]
We seek to automate buyer inquiries to sellers using a domain-specific federated Question Answering (QA) system.
M2Q reformulates buyer messages into succinct questions by identifying and extracting the most salient information from a message.
Live deployment shows that automatic answering saves sellers from manually responding to millions of messages per year.
arXiv Detail & Related papers (2024-01-18T08:09:27Z) - Generate-then-Retrieve: Intent-Aware FAQ Retrieval in Product Search [20.216161323866867]
Frequently Asked Question (FAQ) retrieval aims to retrieve common question-answer pairs for a user query with question intent.
Integrating FAQ retrieval in product search can not only empower users to make more informed purchase decisions, but also enhance user retention through efficient post-purchase support.
We propose an intent-aware FAQ retrieval system consisting of (1) an intent classifier that predicts when a user's information need can be answered by an FAQ; (2) a reformulation model that rewrites a query into a natural question.
arXiv Detail & Related papers (2023-06-06T05:18:21Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Product Question Answering (PQA) on E-Commerce platforms has attracted increasing attention as it can act as an intelligent online shopping assistant.
It is insufficient to provide the same "completely summarized" answer to all customers, since many customers are more willing to see personalized answers with customized information only for themselves.
We propose a novel multi-perspective user preference model for generating personalized answers in PQA.
arXiv Detail & Related papers (2021-12-27T07:51:49Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
Recommendation reason generation plays a vital role in attracting customers' attention as well as improving user experience.
We propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users' interests.
Experimental results show that our model is superior to traditional generative models.
arXiv Detail & Related papers (2021-02-16T02:08:52Z) - On the Social and Technical Challenges of Web Search Autosuggestion
Moderation [118.47867428272878]
Autosuggestions are typically generated by machine learning (ML) systems trained on a corpus of search logs and document representations.
While current search engines have become increasingly proficient at suppressing such problematic suggestions, there are still persistent issues that remain.
We discuss several dimensions of problematic suggestions, difficult issues along the pipeline, and why our discussion applies to the increasing number of applications beyond web search.
arXiv Detail & Related papers (2020-07-09T19:22:00Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.